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All known proper ferroelectrics are unable to polarize normal to a surface or interface if the resulting
depolarization field is unscreened, but there is no fundamental principle that enforces this behavior. In this
work, we introduce hyperferroelectrics, a new class of proper ferroelectrics which polarize even when the
depolarization field is unscreened, this condition being equivalent to instability of a longitudinal optic mode
in addition to the transverse-optic-mode instability characteristic of proper ferroelectrics. We use first-
principles calculations to show that several recently discovered hexagonal ferroelectric semiconductors
have this property, and we examine its consequences both in the bulk and in a superlattice geometry.
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Ferroelectrics, which are materials with a nonzero
spontaneous polarization that can be switched by an
external electric field, have been extensively studied both
experimentally and theoretically. Much of the work on
ferroelectrics has focused on proper ferroelectrics, such as
BaTiO;. These have a nonpolar reference structure that is
related to the ferroelectric ground state by a polar distortion
that lowers the energy in zero macroscopic electric field,
corresponding to an unstable transverse optic (TO) mode.
However, a slab of a typical proper displacive ferroelectric
with insulating surfaces will not spontaneously polarize
with polarization normal to the surface, because at quad-
ratic order in the polarization the energetic cost of the
resulting depolarization field is larger than the energy gain
from freezing in the distortion [1]. In order to polarize, the
depolarization field must be screened, as, for example, by a
metallic electrode placed on the surfaces of the ferroelectric
slab [2,3].

In contrast to proper ferroelectrics, improper ferroelec-
trics do not have an unstable polar distortion in their high-
symmetry structure. Instead, these materials have one or
more unstable nonpolar distortions. However, when these
distortions assume nonzero values, they break inversion
symmetry in the material, resulting in a nonzero polariza-
tion [4-7]. Because the primary energy-lowering distortion
in an improper ferroelectric is nonpolar, the depolarization
field is too weak to prevent the instability. Thus, a slab cut
from such a material can develop a nonzero polarization
normal to the surface [8].

In this work, we demonstrate a new class of “hyper-
ferroelectrics.” These are proper ferroelectrics in which the
polarization persists in the presence of a depolarization
field. Using first-principles calculations, we identify hyper-
ferroelectrics in the recently discovered class of hexagonal
ABC semiconducting ferroelectrics [9]. Using first-
principles-based modeling, we show that hyperferroelec-
trics have an electric equation of state that is qualitatively
different from those of both proper and improper
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ferroelectrics, resulting in persistent polarization regardless
of screening and unique dielectric behavior. Finally, we
discuss the potential applications of hyperferroelectrics,
whose ability to polarize in ultrathin layers may allow the
creation of highly tunable thin-film or superlattice struc-
tures displaying ultrafast switching behavior.

We perform first-principles density functional theory
(DFT) calculations [10,11] within the local-density
approximation [12] using the QUANTUM ESPRESSO code
[13]. We use ultrasoft [14] pseudopotentials from the
Garrity, Bennett, Rabe, Vanderbilt high-throughput pseu-
dopotential set [15,16]. Phonon frequencies, Born effective
charges, and electronic dielectric constants are calculated
by using DFT perturbation theory [17-19], and polarization
is calculated by using the Berry phase method [20].

We begin by reviewing the properties of normal proper
ferroelectric materials, which in their high-symmetry phase
have at least one unstable TO mode, specifically, a I mode
that is unstable under zero macroscopic electric field
(€ = 0) boundary conditions. The frequency of this mode
can be obtained from first-principles computation of the
force-constant matrix with the usual periodic boundary
conditions. The longitudinal optic (LO) modes can then be
obtained by adding to the force-constant matrix a nonana-
lytic long-range Coulomb term that schematically takes the
form (Z*)?/e®, where Z* are the Born effective charges
and €% is the electronic contribution to the dielectric
constant, generating the well-known LO-TO splitting
[21]. For normal proper ferroelectrics, this nonanalytic
term is sufficiently large that all the LO polar modes are
stable; in other words, the depolarization field resulting
from the long-range Coulomb interaction will prevent the
ferroelectric from polarizing under fixed D = 0 boundary
conditions. For typical perovskite oxides, the strength of
the depolarization field must be weakened by at least 90%
to allow for a nonzero polarization with D = 0 [1].

While large-band-gap oxide ferroelectrics, which typi-
cally have large Z*’s and small ¢*’s, have all LO modes
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stable, there is no fundamental principle that enforces this
stability. For example, in a class of materials called “weak
ferroelectrics™ [22], the mode effective charge, and thus the
LO-TO splitting, is negligible, and the polarization of the
ferroelectric phase is produced by higher-order coupling to
the hard polar modes. As we will demonstrate in detail
below, unstable LO modes can also be found in semi-
conducting hexagonal ABC ferroelectrics. The crystal
structure is shown in Figs. 1(a) and 1(b) (space group
P6;mc, LiGaGe structure type). The high-symmetry phase
of these materials consists of layers of two atoms in an s p?-
bonded honeycomb lattice separated by layers of a third
“stuffing” atom, as shown in Figs. 1(a) and 1(b). The polar
phase is reached by a single I'>~ phonon mode, which
consists primarily of a buckling in the honeycomb layers as
the atoms move from an sp? environment towards sp>
bonding, resulting in polarization in the z direction [9].
In Table I, we report the lowest TO and LO phonon
frequencies and dielectric constants, as well as band gaps,
AZ:, = +/>,,(Z:.)2,/N, and polarizations for a variety of
ABC ferroelectrics; those with imaginary LO frequencies
are, by definition, hyperferroelectrics. The relatively small
AZ}, ~ 3 and large (¢*),, ~ 10-20 both contribute to the
weak depolarization fields in these materials [for reference,
cubic perovskites typically have AZ:, ~ 5 and (¢®),, = 6].
Both the small effective charges and large dielectric
constants of ABC ferroelectrics are consequences of the
covalent bonding and resulting small band gaps of these
semiconductors. In Fig. 1(c), we show the phonon
dispersion for the hyperferroelectric LiBeSb, which is a
previously synthesized material [23,24]. We see that the
lowest frequency phonon mode for ¢ — 0 is unstable
regardless of the direction from which I" is approached.
In order to investigate the electric equation of state of
hyperferroelectrics, we use a simple first-principles-based
model. We first define a dimensionless polar internal degree
of freedom, u, as the buckling of the honeycomb layer,
which varies from zero in the high-symmetry structure to
one in the polar structure at £ = 0. Then, we expand the
free energy up to second order in &, and up to sixth order
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FIG. 1

(color online).
(P63/mmc) and (b) polar (P65/mc) ABC ferroelectrics. The
large green atom is the stuffing atom. (c) Phonon spectrum of
high-symmetry LiBeSb, from K (x/3a, 7/3a, 0) to " (0, 0, 0) to
A (0, 0, #/2¢) (imaginary frequencies are plotted as negative
numbers).

Structures of (a) high-symmetry

in u, with the £ = 0 polarization included up to first order
in u [25]:

F(u,&) = —au® + bu* +cu6—Psu5—%)(e(u)52, (1)

where F is the free energy, y,(u) = ¢®(u) — 1 is the zero-
field electronic susceptibility as a function of u, and Py, a,
b, and ¢ are constants. The polarization P is then

OF
Pu) = — 55 = P+ 7. (w)E. @)

which allows us to identify P, as the spontaneous polari-
zation of the ground-state structure at zero electric field
(u = 1, & = 0), justifying the notation for this constant. We
fit this model to our materials by running a series of
calculations with £ = 0 and u fixed between O and 1.1,
allowing all of the other internal degrees of freedom as well
as the lattice vectors to relax. In addition, we calculate
€*(u) for each structure, which we fit to a cubic spline.
Using the model of Egs. (1) and (2), we can parametri-
cally plot £(u), P(u), and D(u) = ¢,€ + P versus each
other, which we do for both the normal ferroelectric
NaMgP and the hyperferroelectric LiBeSb in Figs. 2 and
3. In both cases, we indicate regions that are locally
unstable, locally stable, and globally stable under fixed-
& boundary conditions. In locally unstable regions
(OP/0E < 0), the atomic degrees of freedom are at an
unphysical maximum of the free energy, rather than a
minimum. In NaMgP, P as a function of £ is multivalued at
& = 0, indicating that NaMgP is ferroelectric, with sponta-
neous polarization as given in Table I. However, P vs D is
single valued, indicating that NaMgP will not polarize
under fixed D =0 boundary conditions and thus is a
normal proper ferroelectric. In contrast, for the hyperferro-
electric LiBeSb, both P vs € and P vs D are multivalued, so

TABLE 1. Properties of ABC hexagonal ferroelectrics.
Compounds are listed with the stuffing atom first. First-
principles results for the high-symmetry phase: wto and wpg
are frequencies of unstable polar modes approaching I' along
q = (100) and (001), respectively; L. is defined in the text;
(€%).. is the zz electronic dielectric constant; AZ?, is the rms zz
Born effective charge; “Gap” is the band gap. P(¢=0) is the first-
principles polarization at £ = 0. P(°=0) is the polarization
computed from the model of Egs. (1) and (2) at D = 0.

[O4Ve) @10 Gap P(SZO) P(D:())
ABC (cm™!) (em™!) (e®),. AZ: (eV) (C/m?) (C/m?)

LiZnP 134 49 133 3.0 127 0.0 0
NaMgP  131i 150 106 29 0.89 0.52 0
LiZnAs  118i 68i 155 3.0 048 0.73 0.02
LiBeSb  144i 47t 199 29 093 0.59 0.02
NaZnSb  42i 14i 102 20 0.69 0.1 0.01
LiBeBi 171 132i 221 29 083 0.54 0.02
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FIG. 2 (color online). Computed energy landscape and electric
equations of state for normal ferroelectric NaMgP. (a) Energy vs
polar mode u. Dots are first principles; the line is a fit to the
model. (b) P vs €y&. (c) P vs D. (d) D vs ¢y&. Dashed red lines are
locally unstable at fixed &; solid red lines are locally stable; solid
black lines are globally stable.

that the material will spontaneously polarize under both
fixed £ =0 and fixed D =0 boundary conditions. In
addition, the slope of D vs & indicates €°=
OD/0E|g_y > 0, despite the unstable polar mode. As
shown in Table I and Fig. 3(c), the D = 0 polarization
of hyperferroelectrics, P(°=9), which we compute with the
model of Eqgs. (1) and (2), is small compared to PE=0).
however, the amplitude of the polar mode remains surpris-
ingly large. The polar distortions of the materials at D = 0
are 25%—75% of their £ = 0 values, but the resultant ionic
polarization is largely canceled by the electronic
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FIG. 3 (color online). Computed energy landscape and electric
equations of state for hyperferroelectric LiBeSb. Details are as
in Fig. 2.

polarization y,(u)E induced by the depolarization field,
resulting in a small net polarization. Similarly, we find that
the D =0 energy differences between the polar and
nonpolar structures are reduced at least 70% relative to
their £ =0 values, due to the energetic cost of the
depolarization field, but in several cases these differences
remain comparable to room temperature.

To emphasize the difference between hyperferroelectrics
and improper ferroelectrics, we briefly review a model of
an improper ferroelectric. In the simplest improper ferro-
electrics, the primary order parameter v is nonpolar, but it
couples to a stable polar mode u with the form uv>. Then u,
which appears only to quadratic order, can be minimized
over analytically, resulting in an effective coupling between
v? and & [26]:

F(v,E) = —av? + bv* — cv3& — %)(852. 3)

In Fig. 4, we plot P vs D and D vs & for this model with
typical parameters. Similar to hyperferroelectrics, improper
ferroelectrics allow for a nonzero polarization at D = 0;
however, the overall shape of the curves is very different.
In particular, improper ferroelectrics lack a structure
with D = P = 0. This reflects the fact that our model of
improper ferroelectrics always has a barrier to homo-
geneous switching via an external field (OP/0&E > 0 every-
where), as the effective coupling between the field and third
power of the nonpolar distortion cannot overcome the
primary quadratic instability. Clearly, then, the physical
behavior of improper ferroelectrics and hyperferroelectrics
is qualitatively different.
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FIG. 4 (color online). Energy landscape and electric equations
of state for improper ferroelectric model of Eq. (3). (a) Energy vs
nonpolar mode v. (b) P vs €. (¢) P vs D. (d) D vs £. All regions
are locally stable at fixed &; globally stable regions in black; other
regions in red.
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FIG. 5 (color online). Interfacial region of (a) nonpolar and
(b) polar phases of the 1/7 LiBeSb/NaBeSb superlattice. The full
supercell has three additional unpolarized NaBeSb layers.

Returning to our main topic, we note that the unusual
electric properties of hyperferroelectrics mean that the
ferroelectric phase transition temperature, which decreases
with decreasing screening, will still be nonzero even under
D = 0 boundary conditions. At this temperature 7'p, the
LO mode becomes unstable and the material becomes a
hyperferroelectric. As a hyperferroelectric goes through 7'
under D = 0 boundary conditions, the inverse dielectric
constant will diverge, rather than the dielectric constant,
which can be understood by comparing the D vs £ plots of
normal and hyperferroelectrics in Figs. 2(d) and 3(d),
respectively. In order to transition from the normal to
the hyperferroelectric state, the slope at the origin of the D
vs & curve, which is equal to the dielectric constant, must
pass through zero.

In order to demonstrate the consequences of the most
notable quality of hyperferroelectrics, their ability to polar-
ize under fixed D = 0 boundary conditions, we place our
ABC ferroelectrics in superlattice configurations with thick
slabs of nonpolar ABC materials. We expect that normal
ferroelectrics will not polarize in this geometry if there are
no free charges, as a sufficiently thick nonpolar layer will
have P = 0, which enforces D = 0 boundary conditions on
the ferroelectric, but hyperferroelectrics will still polarize
under these conditions.

We consider superlattices consisting of ferroelectric ABC
materials combined with nonpolar hexagonal ABC semi-
conductors, specifically normal ferroelectric NaMgP with
nonpolar KZnSb and hyperferroelectric LiBeSb with non-
polar NaBeSb, as shown in Fig. 5. We epitaxially strain
each superlattice to the in-plane lattice constant of the
nonpolar material, allowing the z lattice constant to relax.

As shown in Table II, the normal ferroelectric NaMgP
has essentially no polarization when in a superlattice with
an insulating material. We attribute the tiny 10 meV energy
lowering of the 1/7 NaMgP/KZnSb superlattice to inter-
face effects, as the interfaces between NaMgP and KZnSb
consist of single layers of NaZnSb, which as shown in
Table I is itself a hyperferroelectric. On the other hand, a

TABLE II.  Properties of superlattices. An n/m ABC/A'B'C’
superlattice consists of n BC atomic layers separated by A atomic
layers, and m B'C’ atomic layers separated by A’ atomic layers,
with A layers at both interfaces. AE is the energy gained by
allowing a polar distortion. “Gap(HS)” and “Gap(FE)” are the
band gaps for the nonpolar and polar phases, respectively;
m indicates a metal. For insulators, P(¢=9 is the polarization
for £ = 0 boundary conditions.

AE Gap(HS) Gap(FE) P(¢=0)

Ferro.  Nonpolar Period (eV) eV) V) C/m?
NaMgP KZnSb 1/7 —-0.01 0.32 0.35 0.007
NaMgP KZnSb 2/6 0 0.69 e 0
NaMgP KZnSb  3/7 0 0.61 ‘e 0
NaMgP KZnSb 4/6 0 0.68 e 0
LiBeSb NaBeSb 1/7 —0.07 0.75 0.39  0.03
LiBeSb NaBeSb 2/6 —-0.09 0.57 m m
LiBeSb NaBeSb 3/7 —0.25 0.28 m m
LiBeSb NaBeSb 4/6 —0.50 0.32 m m
LiBeSb NaBeSb 1/3 —0.08 0.77 046  0.07
LiBeSb NaBeSb 2/2 —0.41 0.61 1.02  0.56

single polarized layer of the hyperferroelectric LiBeSb
interfaced with NaBeSb has a significantly lower energy
and reduced band gap relative to an unpolarized layer. A
second LiBeSb layer already provides sufficient polariza-
tion to cause the system to become metallic, due to
dielectric breakdown, a field-induced overlap of conduc-
tion and valence bands leading to charge transfer.

As already demonstrated, hyperferroelectrics can remain
polarized down to single atomic layers even when inter-
faced with normal insulators. Such quasi-2D ferroelectric
systems could have a variety of unusual properties. First, by
adjusting the spacing of layers in a superlattice, the
polarization, well depth, band gap, and internal electric
field could all be tuned. More speculatively, these super-
lattice systems could display novel domain-wall motion or
superfast switching behavior, as they consist of weakly
coupled ferroelectric layers which may allow for easier
domain nucleation, and they support head-to-head and tail-
to-tail domain walls. Also, unlike a normal ferroelectric,
which requires asymmetric screening charges to remain
polarized, a hyperferroelectric can switch between two
states without the motion of screening charges between its
surfaces or interfaces, allowing hyperferroelectric slabs
which are terminated by vacuum or by nonpolar insulators
to be switched via an external field. In addition, in contrast
to improper ferroelectrics, the primary order parameter of
hyperferroelectrics couples directly to an applied electric
field, which may allow for easier switching. Finally, ABC
materials could be used to build an all-semiconducting
ferroelectric field effect transistor, sidestepping many of the
materials difficulties and interface effects that have ham-
pered attempts to interface ferroelectric oxides with
semiconductors [27-29].
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In conclusion, we have introduced a new class of
ferroelectrics, hyperferroelectrics, and we have identified
examples among the ABC hexagonal semiconducting
ferroelectric family. These new ferroelectrics have a variety
of interesting and potentially useful properties, both in the
bulk and as thin films. Furthermore, this work highlights
the benefits of looking beyond well-studied materials
systems in the search for functional materials with novel
properties.
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