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Importance of Second-Order Piezoelectric Effects in Zinc-Blende Semiconductors
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We show that the piezoelectric effect that describes the emergence of an electric field in response to a
crystal deformation in III-V semiconductors such as GaAs and InAs has strong contributions from second-
order effects that have been neglected so far. We calculate the second-order piezoelectric tensors using
density-functional theory and obtain the piezoelectric field for [111]-oriented In,Ga,_,As quantum wells
of realistic dimensions and concentration x. We find that the linear and the quadratic piezoelectric
coefficients have the opposite effect on the field, and for large strains (large In concentration) the quadratic
terms even dominate. Thus, the piezoelectric field turns out to be a rare example of a physical quantity for
which the first-order and second-order contributions are of comparable magnitude.
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Since the discovery of piezoelectricity in 1880 by the
Curie brothers [1], widespread efforts have been aimed at
understanding this peculiar effect and developing its appli-
cations. Piezoelectric materials are in use today in a wide
range of devices, including ultrasonic transducers for
medical and sonar imaging and various types of micro-
positioners and actuators. Since the early days, the effect
has been understood as arising from displacement of the
ions in response to a mechanical deformation, leading to
the appearance of charges on some of the crystal’s surfaces
[1]. Despite some early doubts, it is now well established
[2—6] that this is a bulk effect. It has two components; the
contribution coming from the ionic displacements tends to
be compensated by the purely electronic (frozen-ion) re-
sponse, resulting in a subtle balance between ionic and
electronic contributions [3—5].

Until now, theoretical modeling of the piezoelectric
effect in bulk solids [7], quantum wells (Ref. [8], and
references therein), and, more recently, quantum dots [9—
14] has focused exclusively on the first-order piezoelectric
tensor €, ;, neglecting possible higher-order terms. That is,
ifP, =3 e,m +315 B, jxm;ni + -, where P is the
polarization and 7 is the strain, previous work has con-
centrated on the linear coefficient e, ; to the exclusion of
the quadratic coefficient B, j;.

Recent experimental determinations of piezoelectric
constants (e.g., Refs. [15-21]) have tended to follow this
approach, interpreting the measured piezoelectric fields
by assuming a linear relationship between polarization
and strain (retaining e, ; but neglecting B, ;). Indeed, the
experimental procedures used thus far to deduce piezo-
electric constants from measured fields have made it easy
to overlook the importance of the second-order piezoelec-
tric effect, because measurements were restricted to heter-
ostructure quantum wells with small lattice mismatch
[those with large lattice mismatch, such as high-In-content
(In, Ga)As/GaAs structures, were avoided because they
tend to develop unwanted dislocations]. Similarly, experi-
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ments for quantum wells or bulk materials under pressure
have tended to probe only a very small region of strain, so
that a clear signature of the quadratic dependence of field
upon strain is difficult to detect.

In this Letter, we show, using self-consistent density-
functional theory (DFT) calculations for GaAs and InAs,
that the hitherto neglected second-order piezoelectric ten-
sor gives significant contributions to the piezoelectric field.
We show that neglecting the second-order piezoelectric
tensor leads to an overestimation by 200% in the piezo-
electric field for In,Ga,_,As quantum wells on GaAs in
the experimentally accessible range of concentration x.
For higher In concentrations, accessible in quantum dots,
second-order terms will dominate over first-order terms.
This new insight is important, because it represents a
paradigm shift in the interpretation of measurements of
piezoelectricity in quantum wells and quantum dots.

We find it most convenient to formulate the piezoelectric

response in terms of the reduced (and dimensionless) po-

larization p, defined implicitly via P, = 6zﬂp#a(a“ ),

where e is the charge quantum, () is the cell volume, P,

is the polarization in Cartesian coordinates, and a(a" ) is the
ath component of the uth strain-deformed lattice vector.
We expand this reduced polarization, retaining the second-
order strain as

l « ~
— N30
Pu = ;emm + E%Bp,jknjnk- (D
The reduced proper piezoelectric tensor is then
» dpu _ 5
Cuj ==&t D B )
mj 3

where we use n; (j = 1, 6) to denote strain in the Voigt
notation. Here é‘; ; is the reduced proper piezoelectric
tensor of the unstrained material, while B wjk 18 a fifth rank
tensor with Cartesian coordinates w and the strain index in
Voigt notation j, k and represents the first-order change of

the reduced piezoelectric tensor with strain. We obtain é(/l ;
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and B wjk from first-principles calculations in a manner
described next.

First-principles calculation of linear and nonlinear pie-
zoelectric coefficients.—Symmetry considerations for the
zinc-blende crystal structure imply that the only nonzero
elements of the piezoelectric tensor are &), = &9, = &%
(i.e., there is only one independent element). Similar con-
siderations guarantee that there are only 24 nonzero ele-
ments of the B wjk tensor, which can be reduced to three
independent elements B4, Bj.s, and Bjss. (The other
nonzero elements are obtained by applying cyclic permu-
tations x — y — z or interchanges such as x <> y on the
Cartesian axes, e.g., B4 = Bys, B1os = By3s = Byys, and
Bis¢ = B,ys.) We carried out ab initio calculations of these
tensor elements using a plane-wave pseudopotential ap-
proach to DFT in the local-density approximation (LDA)
as implemented in the ABINIT code package [22]. First, we
relaxed the lattice parameters for both GaAs and InAs.
Next, linear-response calculations of the linear bulk piezo-
electric constant &), were carried out on these relaxed
structures using the ANADDB module of the ABINIT package
[22,23], which implements a direct calculation of the strain
derivatives of the quantities of interest (Kohn-Sham wave
functions, polarizations, etc.) via the chain rule. Then, a
finite-difference technique was used in order to obtain the
nonlinear bulk piezoelectric tensors B wjk- Specifically, we
considered strain states of the form n; = n, =73 =0
and 1y, = n5 = mg = y for several small values of 7y.
With the strain frozen in for a particular value of v, the
ions were allowed to relax, after which the reduced piezo-
electric tensor elements &,,(y), é;,(y), and é,5(y) were
computed using linear-response techniques as before. The
dependence of these elements on y was then fitted, and the
linear dependence extracted. From Eq. (2), this determines
the three independent elements of the B tensor as B4 =
déll/d'y, 3124 = délz/d'y, and §l56 = délS/d'y The re-
sults for GaAs and InAs are given in Table 1.

Calculation of the piezoelectric field for large structures
(non-self-consistent  Poisson approach).—The DFT
method cannot be applied to 10°-10°-atom structures,
which are often of interest in nanoscience. Instead, such
structures can be calculated only by non-self-consistent
methods (e.g., tight binding, kp, empirical pseudopoten-
tials), in which case piezoelectricity must be added as an
external potential. Thus, to model such structures, we first
calculate the strain tensor 7 at each atom site using the
valence force field (VFF) method. In this method, the
bond-stretching, bond-bending, and mixed bending-

TABLE I. Linear and quadratic piezoelectric coefficients
(C/m?) as calculated from DFT.

ey B4 By Bis6
InAs —0.115 —0.531 —4.076 —0.120
GaAs —0.230 —0.439 —3.765 —0.492

stretching terms are derived from experiment. The method
has been shown to give accurate atomic positions for
defect-free bulk and alloys. For example, Bernard and
Zunger compared strain values obtained by LDA and by
VFF for the extreme case of a single monolayer InAs
superlattice in GaAs and obtaining agreement within
0.4% [24]. From a knowledge of the strain field 7;(r),
we can use Eq. (1) to obtain p,(r), and the piezoelectric
charge density (per unit undeformed volume) is then cal-
culated from the divergence (in undeformed coordinates)
of p, via

Priesold) = =V - p. 3
o
The calculation of the divergence [Eq. (3)] is performed
using a piecewise polynomial function to represent the
polarization data points. Finally, the piezoelectric potential
Vpiezo 18 obtained from a finite-grid solver of the Poisson
equation

ppiezo(r) =gV {Es(r)VVpiczo(r)}’ 4)

where we assume an isotropic local static dielectric con-
stant €,(r). However, note that the local polarization cannot
be defined on an arbitrarily small region of space [25] but
only on a scale that exceeds the localization of the maxi-
mally localized Wannier functions [26]. For GaAs and
InAs, we average the strain tensor over eight-atom clusters.
The piezoelectric tensor of Eq. (2) is position-dependent
since it depends on the inhomogeneous strain. Further-
more, for alloys or heterostructures, é,;(r) also depends
on the material concentration at r. In our case, we have
regions in the cell with InAs, GaAs, or mixed (In, Ga)As,
and we use a linear interpolation

A(r) = xApas(r) + (1 — x)Ag,as(r) )

of the tensors (A = e, ; or B, ;) between the constituent
bulk materials for the given local concentration x of the
eight-atom cell. Finally, the solution of the Poisson equa-
tion [Eq. (4)] is obtained on the eight-atom-cluster grid
through a conjugate-gradient algorithm with a position-
dependent dielectric constant €(r) calculated according
to Eq. (5) with A = €,. The approach developed for the
calculation of V,, can be applied easily to very large
(10°-atom) nanostructures.

Testing the non-self-consistent Poisson approach.—We
tested the non-self-consistent procedure described in
Egs. (1)—(4) by comparing the results with direct self-
consistent DFT calculations for a model quantum well of
artificially small dimensions which can be handled by
DFT. The system is a 30-atom [111] InAs quantum well
[(InAs)4(GaAs)y ] epitaxially strained to the GaAs in-plane
lattice constant. For the DFT calculations, we used the
same pseudopotentials and convergence parameters as in
the calculation of the piezoelectric tensors. To obtain the
piezoelectric field directly from the DFT-LDA quantum-
well calculations, we averaged out the atomic oscillations
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from the self-consistent (SCF) Kohn-Sham potential (in-
cluding ionic, Hartree, and LDA exchange-correlation con-
tributions). The direct DFT results of this averaging
procedure [27] are denoted in Fig. 1 as the “SCF DFT-
LDA” curve. (A linear regression of the obtained curve in
the region marked with “Linear Fit” gives a value for the
piezoelectric field of 1255 kV/cm.) The piezoelectric po-
tential obtained with the procedure of Egs. (1)—(4) is given
in Fig. 1 as the dashed curve denoted ‘““non-SCF Poisson.”
The potential jump at the interface is related to the band
offset between materials [27] and is not present in the bare
piezoelectric potential given by the dashed curve. The
potentials are arbitrarily shifted to coincide in the InAs
region. We see that the field deduced from the non-SCF
procedure is 1367 kV/cm, in very good agreement with
the self-consistent DFT-LDA quantum-well result of
1255 kV/cm.

Application to large quantum-well structures.—Having
established the validity of the non-self-consistent method
for small systems, where comparison with DFT-LDA is
possible, we now address nanostructures with sizes and
composition typical of experimental conditions. We chose
here the quantum-well system In,Ga,_,As/GaAs, where
the In,Ga,_,As alloy is epitaxially grown on the GaAs
substrate and the thickness of the well is around 10 nm. We
use 12000 atoms in the simulation cell to accurately
represent the random alloy. We plot in Fig. 2 the piezo-
electric potential along the [111] direction for In concen-
tration x = 0.1-1.0. Figure 2 shows a linear potential along
the growth axis, as expected from the fact that the piezo-
electric charges are well localized at the interfaces. The
small oscillations in the potential are due to random alloy
fluctuations, which are most prominent at low In concen-
trations. Interestingly, Fig. 2 shows that the field reverses
sign between x = 0.4 and 0.3, going from a very strong
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FIG. 1 (color online). Piezoelectric potential calculated from
Egs. (1)—(4) (dashed line) and the Kohn-Sham potential obtained
from self-consistent DFT calculations (solid line). Both calcu-
lations are for an (InAs)e/(GaAs)y superlattice epitaxially
strained on GaAs.

positive field (i.e., negative slope along [111]) for In-rich
wells to a weak negative field in the In-poor regime.

The piezoelectric field extracted from the potential in
Fig. 2 is shown in Fig. 3 as a function of the In concentra-
tion (circles). Figure 3(b) shows the electric field with an
emphasis on the experimentally relevant concentration
range from x = 0.10 to 0.25. We see that the amplitude
of the field obtained with both linear and nonlinear terms is
much smaller than the field obtained with e,; only.
Considering the full concentration range, the field obtained
using both ¢, ; and B, is shown to be negative at low In
concentrations and almost constant until it reaches 30%,
where it reverses sign and becomes very strong. The field
we obtain for a concentration range of 16%—-20% In is
nearly constant around 80 kV /cm.

A direct comparison of calculated and measured electric
fields is difficult, because only a few experiments report the
value of the measured field and the measurements and
calculations are performed on different concentrations
and thicknesses. Cho et al. [20] obtained a field of 129 *
12 kV/cm for a 17% In well with an estimated 8.7 nm
thickness, and Sanchez et al. obtained a field of 137 =
6 kV/cm for a 17% In well with 10 nm thickness and
121 £ 5kV/cm for a 10 nm thick well with 21% In
concentration. Furthermore, the results are clouded by
strong temperature effects [17,20,21] (pyroelectricity)
and possible effects of In segregation [19]. However, one
experimental observation that does not seem to depend on
well concentration and thickness is the fact that the mea-
sured piezoelectric field leads to an e, value that is about
35% smaller than what is expected by using the linear
coefficients alone. This has been reported on many occa-
sions [16-18,20,28] and constitutes an unsolved puzzle.
This result can be accurately compared with our calcula-
tions. If we calculate the piezoelectric field using the
experimental value of e, for bulk InAs (—0.045 C/m?)
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FIG. 2 (color online). (a) Piezoelectric potential calculated
from Eqgs. (1)—=(4) for an 11 nm In,Ga;_,As well epitaxially
strained to GaAs for x = 0.1-1.0. (b) Same as (a) for x =
0.1-0.5.
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FIG. 3 (color online). (a) Piezoelectric field as a function of x.
Circles: Correct result with linear and nonlinear piezoelectric
tensors from DFT. Triangles: Neglecting B, ;. and using experi-
mental e, ;. Squares: Neglecting B, and using LDA e,;.
(b) Magnification of the low-concentration region.

and bulk GaAs (—0.160 C/m?) and neglecting the second-
order tensors B, j; in Eq. (1) (triangular symbols in Fig. 3),
which is equivalent to the experimental procedure that
leads to an overestimation of e, by 35%, we find for the
concentration region of =18%-21%, an overestimation of
the magnitude of the field by 34%—52%. Our results there-
fore explain the origin of the experimentally observed
deviation [16-18,20,28]: A linear interpolation between
the InAs and GaAs values of e, cannot reproduce the
piezoelectric field of alloyed quantum wells since the field
does not originate from the linear coefficient alone but has
significant contributions from the second-order piezoelec-
tric tensors B, j; (neglected in the analysis of the experi-
mental results).

To emphasize the effect of the nonlinear tensors B, j
further, we plot using square symbols in Fig. 3 the piezo-
electric field with e, ; set to the DFT values and B ,;; set to
zero. The results show that, when taking only the linear
tensor into account, the field is overestimated by about
200% in the region of low concentration [Fig. 3(b)] and
even has the wrong sign at higher concentrations.

In summary, we have shown that the second-order piezo-
electric tensor, generally neglected so far in theoretical and
experimental work, contributes significantly to the piezo-
electric effect in zinc-blende semiconductors. We showed
that the piezoelectric field calculated by including first-
and second-order piezoelectric tensors obtained from
DFT agree well with experiments, whereas neglect of
nonlinearities leads to qualitative disagreements. We argue
that the “‘piezoelectric coefficients” that have been ex-
tracted from experimental work so far are actually effective
ones reflecting equally strong first- and second-order
contributions.
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