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The equilibrium crystal structure (lattice constants and chain radius) of trigonal selenium,
a molecular crystal, are determined by minimizing the total energy, as calculated in the
local-density and frozen-core approximations. The cohesive energy and I'j(4;) phonon fre-
quency are also computed. Comparison with experiment shows excellent agreement for in-
trachain properties, and satisfactory agreement for interchain properties. This indicates
that ab initio local-density total-energy calculations are viable for the case of molecular

crystals.

I. INTRODUCTION

The development of accurate ab initio pseudopo-
tentials! ~> has made it possible to perform realistic
calculations of total energies within the local-density
approximation® for covalently bonded semiconduct-
ors’~!! and metals.”>~!* Here we present the first
application of these techniques to a molecular crys-
tal. We consider trigonal selenium, which consists
of infinite helical chains of covalently bonded
atoms. Because of the weak interchain bonding,
sometimes ascribed to van der Waals forces, this
system provides a particularly stringent test case for
a local-density theory of total energies.

We begin with a discussion of the choice of pseu-
dopotential in Sec. II. Section III contains a
description of the calculations. In particular, the
implementation of Lowdin perturbation theory'” for
total-energy calculations is discussed. In Sec. IV, we
present and discuss the results for Se, and compare
with experiment. Finally, in Sec. V we summarize
briefly.

II. CHOICE OF PSEUDOPOTENTIAL

In order to obtain accurate total energies, a pseu-
dopotential is desired which accurately reproduces
not only the eigenvalues, but also the wave functions
outside the core region when compared with the all-
electron case. An attempt at constructing such po-
tentials was first made by Starkloff and Joanno-
poulos! (SJ) for local pseudopotentials.  Their
pseudo-wave-function could match the all-electron
wave function outside the core to better than 1%.
Recently, it has been pointed out that the pseudo-
and real-wave-functions could be required to match
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exactly outside the core, if nonlocal pseudopotentials
are used. In either case, the transferability of the
pseudopotential is improved, because it can be prov-
en that the energy derivatives of the phase shifts
remain unchanged if the wave functions match.’

Various ways of constructing nonlocal pseudopo-
tentials have now been proposed.>~> These poten-
tials are of the form

Op(r)=3 Up (NP} . (1
1

For calculations done in a plane-wave basis, a soft
core pseudopotential is desirable. The pseudopoten-
tial of Hamann, Schluter, and Chiang® (HSC) is of
this type.

The use of a nonlocal potential, Eq. (1), introduces
several inconveniences. For example, it becomes
cumbersome to calculate gradients of the eigen-
values in k space, or to do kP perturbation theory.
Also, force calculations require an extra double
sum.'® While these disadvantages are not compel-
ling, it would be useful if an accurate local pseudo-
potential was available.

The local SJ pseudopotential proposed for Se is of
the form

Ups(r)z—f(r;k,rc)% : (22)
_,—Ar
Frihr)=—"=2 "~ (2b)
1+4e i

In Fig. 1, we compare the local SJ pseudopotential
(with A=10.196 a.u."!, 7,=0.92278 a.u. with the
HSC nonlocal pseudopotential [in the configuration
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FIG. 1. Ionic pseudopotentials for Se. Solid line: local
SJ potential (Ref. 4). Dashed lines: nonlocal HSC poten-
tial (Ref. 1).

s2p%°d%> with r,(s)=1.18 a.u., 7.(p)=1.24 a.u., and
r.(d)=1.18 a.u.]. Both potentials were constructed
using the Wigner form!” for exchange correlation.
Both potentials reproduce the s and p valence all-
electron eigenvalues exactly. The SJ potential is
constructed in such a way as to satisfy the norm-
conserving property as well as possible. In fact, we
find that the pseudo-wave-function and all-electron
wave function differ by only —0.14% and 0.44%
for s and p waves, respectively, in the tail region.
Thus norm conservation is obtained to an excellent
approximation.

We further check the transferability of each po-
tential by plotting the logarithmic derivative of the
wave functions as a function of energy at a given ra-
dius. This is shown in Fig. 2. The HSC pseudopo-
tential appears to do only slightly better than the SJ
potential in this regard.

Thus the accuracy of the local SJ pseudopotential
for Se is quite adequate. Its main drawback is the
fact that the cutoff near r, must be substantially
sharper than for the nonlocal potential. Conse-
quently, more high Fourier components are required
to represent the potential. For a plane-wave basis
calculation, this implies that a larger matrix must be
diagonalized to obtain the same accuracy. For this
reason, we have chosen to work with the nonlocal
HSC pseudopotential in the total-energy calculations
presented here.

III. BULK CALCULATIONS

The calculation of the total energy for the Se crys-
tal is based upon the momentum-space formalism

d(in¥)/dr (Ry™)

d(iny)/dr (Ry™)
o

o

-30

Energy (Ry)

FIG. 2. Logarithmic derivatives of valence wave func-
tions of Se vs energy at R =3 a.u. (a) Nonlocal HSC po-
tential (Ref. 1). (b) Local SJ potential (Ref. 4). Solid lines
are for all-electron wave functions; dashed lines are for
pseudo-wave-functions.

outlined by Ihm, Zunger and Cohen.'® In addition,
however, we have implemented the Lowdin pertur-
bation scheme!® as a way of reducing the size of the
Hamiltonian matrix which must be diagonalized.
When applied correctly, this allows a very substan-
tial savings in computer time. Since the Léwdin
scheme is not widely utilized in total-energy calcula-
tions, perhaps a few words are in order.

The Lowdin scheme reduces the size of the matrix
to be diagonalized by including some higher Fourier
basis vectors in first-order perturbation theory. Let
roman letters label plane waves in set 4 with energy
O<e€, <E,, and greek letters label plane waves in set
B with E4 <€, <Ep. Then we construct a renor-
malized Hamiltonian for set 4 which includes set B
in perturbation theory:

Unmn =Hpn +2 Hnellen : 3)
S €—¢,
This is sometimes called “folding in” of the higher-
energy components. The new Hamiltonian U,,, has
more accurate eigenvalues than H,,,.

Once U,,, has been diagonalized, the eigenfunc-
tions must be constructed in order to obtain the
charge densities for the next self-consistent iteration.
On one hand, it is possible to simply use the eigen-
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states of U,,, (that is, the wave functions have no
Fourier components in set B). On the other hand, it
is better to use the perturbed wave functions. If
Y°'=1, C,®, is the eigenvector, Uy*=ey", then the
perturbed ¢ is

Uan
¢=¢°+z 2 e—e Cn ¢a . (4)

a

While the latter procedure (sometimes called “fold-
ing out” the wave function) is indeed preferable, it
substantially increases the computer time required to
compute and Fourier transform the charge densities.
In practice, we find that if E, and Ep are chosen
large enough to be close to convergence (i.e., the
cohesive energy is within ~1 eV/atom of the con-
verged value), the folding-out procedure provides
very little improvement in the total energy (~0.05
eV/atom), although the charge densities are indeed
substantially better. On the other hand, if E, is low
enough, the folding out does substantially improve
the total energy.

In the denominator of Eq. (3), it is necessary to
replace the energy € by some representative or aver-
age value € For band-structure or optical calcula-
tions, it is often customary to set € at or near the
Fermi level, to give a good description of the gap.
However, for ground-state total-energy calculations
it is important to set € at the center of gravity of the
filled valence levels (well below €z). Otherwise, the
energy denominator is systematically too small, so

TABLE L. Tests for the convergence of the cohesive
energy with respect to basis size for Si at the experimental
lattice constant. Calculations were done at one k. point,
scaled to ten k points, and then corrected by a contant for
zero-point motion and spin polarization. Wave functions
were folded out whenever Loéwdin perturbation sets were
used. When values are not given for Ep, Lowdin pertur-
bation was not used. Relative computer time per iteration
per K point is shown in the last column.

EA EB Etot Time

Case (Ry) (Ry) (eV/atom) (sec)
1 7.5 3.95 21
2 9.5 4.46 37
3 11.5 4.68 64
4 7.5 11.5 4.70 30
5 9.5 11.5 4.68 42
6 11.5 4.68 64
7 11.5 15.0 4.83 85
8 11.5 20.0 4.86 120
9 11.5 25.0 4.89 160

that the resulting eigenvalues and total energies are
systematically too deep. We find that the correct
choice of € substantially improves the effectiveness
of the Léwdin method in reducing the cost of total-
energy calculations.

To test the usefulness of the Lowdin perturbation
scheme, we have carried out tests on the well-studied
system of crystalline Si. The results are shown in
Table I. It is seen that the Lowdin theory gives
equally accurate results while allowing the cost of
the calculation to be cut in half (compare cases
4—6). Case 3 is an actual 10—k-point calculation
identical to that of Yin and Cohen,’ and it is grati-
fying that we reproduce their value to within ~0.01
eV. Using the Lowdin scheme, we can now go to
more complete convergence. Cases 6—9 show that
this adds ~0.2 eV to the theoretical binding energy.
This worsens the agreement with experiment, but is
consistent with the observation that cohesive ener-
gies calculated in local-density theory are generally
too deep by several tenths of an eV.

In order to calculate the cohesive energy of Se, it
is necessary to find the equilibrium structure by
minimizing the energy with respect to structural de-
grees of freedom. The trigonal crystal structure of
Se, shown in Fig. 3, has three degrees of freedom,
which we take to be the first-neighbor distance d;,
the intrachain bond angle 6, and the second-
neighbor distance d, determining the interchain
spacing.

The equilibrium geometry was determined as fol-
lows. First, d, was fixed at the experimental value
of 342 A.'® Then d, and 6 were varied in incre-

FIG. 3. Chain structure of trigonal Se, showing defini-
tions of various structural parameters. Chains form a tri-
angular lattice when viewed from the ¢ direction; only two
chains are shown.
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ments of 10% and 5° from the experimental values
of 2.39 A and 102.4°, respectively.'® For each value
of d, and 6, the total energy was calculated using
E ;=348 Ry and Ez=11.60 Ry, with the wave
functions folded out, and with three special k
points'® in the irreducible Brillouin zone. The two-
dimensional matrix of total-energy values was fit by
least squares to a third-order polynomial in d; and
6. The parameters d; and 6 were then held fixed at
the values which minimized this polynomial while
d, was varied in increments of 10%. The value of
d, was obtained by fitting to a cubic polynomial and
finding the minimum. With this new value of d,
fixed, d| and € were again varied as before to obtain
their final values.

With the equilibrium geometry thus specified, the
frequency of the Ty (4;) phonon frequency at zone
center, corresponding to a breathing mode of the
chains, was calculated in the frozen-phonon approx-
imation by holding the two lattice constants a and ¢
fixed and calculating the total energy for a series of
values of the reduced chain radius u (for notation
see Fig. 3). Again a cubic fit to these results was
performed to give the second derivative of the ener-
gy with respect to u. Finally, E; and Ep were in-
creased (up to 8.91 and 20.15 Ry, respectively) until
we were confident that the cohesive energy was well
converged with respect to basis set size. This result-
ed in an additional lowering of the cohesive energy
by ~1eV/atom, The effects of increasing the num-
ber of special k points was also checked, but was
found to be negligible (~0.03 eV/atom). Finally,
the cohesive energy was calculated by subtracting
off the energy of the pseudoatom, with a spin-
polarization correction of 0.76 eV/atom, calculated
by using the Hedin-Lundquist correlation.? For
completeness, an estimate of the zero-point energy
of the lattice was also included, although it amounts
to only ~0.02 eV/atom in Se.

IV. RESULTS AND DISCUSSION

Table II summarizes our results for the equilibri-
um geometry, cohesive energy, and I'; (4,) phonon
frequency for trigonal Se. We find that the intra-
chain parameters d, and 6 are in excellent agree-

24
3

261
>’ \
o
C
g 28F +
W +
[}
>
g /

+

© 32F

34 - L L L s

.

26 28 30 32 34 36 38
o

dy(R)

FIG. 4. Total energy of trigonal Se as a function of
second-neighbor (interchain) distance d,, with intrachain
parameters (d, and 60) held constant. Symbols show cal-
culated points; solid curve is a guide to the eye.

ment with experiment. The interchain distance d,,
on the other hand, is ~10% too short. The depen-
dence of E,,; on d, is illustrated in Fig. 4. Note the
large anharmonicity, indicating that it is easier to
stretch a bond than to compress it. The agreement
for d, is felt to be quite reasonable in light of the
difficulties in modeling the weak intermolecular
binding of a molecular crystal. Evidently the local-
density approximation is overestimating the strength
of this binding.

Our calculated cohesive energy is found to be ~1
eV too deep compared to experiment.?! Several fac-
tors probably contribute to this error. First, as men-
tioned in Sec. III, an overestimate of the cohesive
energy by several tenths of an eV seems to be a gen-
eral feature of local-density total-energy calcula-
tions. This could be due to an inaccurate descrip-
tion of the tail region of the free atom, or to some
inadequacy in the description of electron correla-
tions in the solid. In either case the error might be
expected to be larger for a column-VI element sim-
ply due to the larger number of valence electrons.
Second, the overestimate of the interchain binding
undoubtedly plays a part. Third, omission of rela-
tivistic effects may introduce a small error. For
most applications, an absolute error in the cohesive

TABLE II. Calculated minimum energy structure, cohesive energy, and I'; (4,) phonon frequency of trigonal Se, com-
pared to experiment (Refs. 18 and 21). The notation is that of Fig. 3; in addition, ¢ is the dihedral angle along a chain,
E_, is the cohesive energy per atom, and w,y, is the frequency of the I'; (4) phonon mode.

d, d, 0 a ¢ é Econ Opn

(A) (A) (deg) (A) (A) u (deg) (eV) (cm™Y)
Theory 2.367 3.104 102.60 3.974 4913 0.2483 100.32 3.13 206
Experiment 2.390 3.422 102.48 4.366 4.955 0.2285 100.24 2.25 235
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FIG. 5. Valence charge density of trigonal Se. (a) Sum
of 5 and p bonding bands. (b) p lone-pair band. The plane
of the plot passes through three consecutive atoms (black
dots) along the chain.

energy is not important as long as the total energy
differences between two similar structures are well
reproduced. The excellent agreement for d; and 6
attest that this is the case. The agreement for the
phonon frequency is also quite adequate.

The crystal has a calculated indirect gap from M
to H of 0.7 eV, compared to the experimental value
of 1.86 eV. That the gap is much too small is, of
course, a general feature of local-density calcula-
tions, particularly when they are optimized to total

energies rather than excitation properties (see, e.g.,
Ref. 7).

The calculated charge densities for the equilibri-
um structure are shown in Fig. 5. The charge densi-
ty of the nonbonding (lone pair) orbitals has been
plotted separately from that of the bonding orbitals
for clarity. The intrachain bonding dominates, and
there is no sign of strong covalent interchain bond-
ing.

V. SUMMARY

We have calculated the crystal structure and
cohesive energy of trigonal Se within the local-
density and frozen-core approximations. The intra-
chain structure is found to be very accurately repro-
duced. The interchain distance is given less accu-
rately, as must be expected for a molecular crystal.
However, the important features of trigonal Se, e.g.,
the strong asymmetry between strong intrachain and
weak interchain bonding, are preserved intact. Thus
we feel that the viability of local-density total-
energy calculations for molecular crystals has been
demonstrated.

ACKNOWLEDGMENTS

This work was supported through the MIT Center
for Materials Science and Engineering via National
Science Foundation (NSF) Grant No. DMR-76-
80895. Additional University of California (Berke-
ley) support in the latter stages of the work was pro-
vided by NSF Grant No. DMR-78-22465 and by the
Director, Office of Energy Research, Office of Basic
Energy Sciences, Materials Sciences Division of the
U. S. Department of Energy under Contract No.
DE-ACO03-76SF00098. The authors (D.V. and
J.D.J.) should also like to thank the Miller Institute
and the John S. Guggenheim Foundation, respec-
tively, for receipt of fellowships.

ITh. Starkloff and J. D. Joannopoulos, J. Chem. Phys.
68, 5794 (1978).

2A. Redondo, W. A. Goddard, III, and T. C. McGill,
Phys. Rev. B 15, 5038 (1977).

3D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev.
Lett. 43, 1494 (1979).

4A. Zunger and M. L. Cohen, Phys. Rev. B 20, 4082
(1979).

5G. Kerker, J. Phys. C 13, L189 (1980).

6P. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964); W. Kohn and L. J. Sham, ibid. 140, A1133
(1965).

M. T. Yin and M. L. Cohen, Phys. Rev. Lett. 45, 1004
(1980).

8A. Zunger, Phys. Rev. B 21, 4785 (1980).

M. T. Yin and M. L. Cohen, Solid State Commun. 38,
625 (1981).

10J, Thm and M. L. Cohen, Phys. Rev. B 23, 1576 (1981).

11y, Thm and J. D. Joannopoulos, Phys. Rev. B 24, 4191
(1981).

12A. Zunger and M. L. Cohen, Phys. Rev. B 19, 568
(1979).

13p. K. Lam and M. L. Cohen, Phys. Rev. B 24, 4224
(1981).

14M. Y. Chou, P. K. Lam, and M. L. Cohen, Solid State
Commun. 42, 861 (1982).

I5p. Léwdin, J. Chem. Phys. 19, 1396 (1951).

165, Thm, A. Zunger, and M. L. Cohen, J. Phys. C 12,



27

4409 (1979).
I7E. P. Wigner, Phys. Rev. 46, 1002 (1934).
18D, R. McCann and L. Cartz, J. Appl. Phys. 43, 4473

(1972); W. Lingelbach, J. Stuke, G. Weiser, and J.
Treusch, Phys. Rev. B 5, 243 (1972).

TOTAL ENERGIES IN Se. I. THE TRIGONAL CRYSTAL 6301

193, D. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747

(1973).
20L. Hedin and B. I. Lundquist, J. Phys. C 4, 2064 (1971).
21C, Kittel, Introduction to Solid State Physics, 5th ed.

(Wiley, New York, 1976), p. 74.



