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Monoclinic and triclinic phases in higher-order Devonshire theory
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~Received 19 September 2000; published 29 January 2001!

Devonshire theory provides a successful phenomenological description of many cubic perovskite ferroelec-
trics such as BaTiO3 via a sixth-order expansion of the free energy in the polar order parameter. However, the
recent discovery of a novel monoclinic ferroelectric phase in the PZT system by Nohedaet al. @Appl. Phys.
Lett. 74, 2059~1999!# poses a challenge to this theory. Here, we confirm that the sixth-order Devonshire theory
cannot support a monoclinic phase, and consider extensions of the theory to higher orders. We show that an
eighth-order theory allows for three kinds of equilibrium phases in which the polarization is confined not to a
symmetry axis but to a symmetry plane. One of these phases provides a natural description of the newly
observed monoclinic phase. Moreover, the theory makes testable predictions about the nature of the phase
boundaries between monoclinic, tetragonal, and rhombohedral phases. A ferroelectric phase of the lowest
~triclinic! symmetry type, in which the polarization is not constrained by symmetry, does not emerge until the
Devonshire theory is carried to twelfth order. A topological analysis of the critical points of the free-energy
surface facilitates the discussion of the phase transition sequences.

DOI: 10.1103/PhysRevB.63.094108 PACS number~s!: 77.80.Bh, 77.84.Dy, 64.70.Kb
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I. INTRODUCTION

Many of the most important and best studied ferroelec
materials adopt the simple-cubic perovskite structure at h
temperature and undergo structural phase transitions to
torted ferroelectric structures at lower temperature. Amo
the best known simple compounds of this kind are BaTi3
and PbTiO3. Upon cooling, BaTiO3 undergoes a sequence
ferroelectric transitions: first from the cubic~C! to a tetrag-
onal ~T!; then to an orthorhombic~O!; and finally to a rhom-
bohedral~R! phase. Passing through this sequence, the
larizationP first vanishes in the C phase, and then becom
oriented in the@001#, @011#, and@111# directions in the T, O,
and R phases, respectively. PbTiO3 undergoes a single ferro
electric transition from the C to T phase.

In a classic 1948 paper, Devonshire1 was able to explain
the observed phases and phase transition sequence
naturally in terms of a phenomenological Landau-type
pansion of the free energy in terms of the ferroelectric or
parameterP. Making use of cubic symmetry and truncatin
the expansion to sixth order inP, Devonshire was able to
arrive at a simple model with only a single temperatu
dependent second-order coefficient, and only th
temperature-independent higher-order coefficients. The
larizationP is the primary order parameter, and the cryst
lographic labels~T, R, etc.! refer to the distortions induce
by the polarization and the resulting strain. Despite its s
plicity, this model could successfully reproduce the pha
transition sequence1 and the piezoelectric and othe
properties2 of BaTiO3. With a simple modification of the
anharmonic coefficients, the qualitative behavior of PbTi3
could be equally well reproduced.

However, the material that is currently in most wid
spread use for piezoelectric transducer and related app
tions is the solid solution PbZr12xTixO3, commonly known
as PZT. The standard understanding of the phase diagra
PZT has been as follows.3 PZT undergoes a transition from
the simple cubic C phase to a ferroelectric phase at a C
0163-1829/2001/63~9!/094108~9!/$15.00 63 0941
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temperatureTc that ranges from about 490 °C atx51 to
230 °C atx50. The transition occurs to the T phase forx
greater than about 0.48, and to the R phase for smallerx. At
T,150 °C orx,0.1, some more complex phases involvin
antiferroelectric~AFE! or antiferrodistortive~AFD, i.e., in-
volving rotations of oxygen octahedra! displacements also
occur. The phase boundary between the simple T an
phases, known as the morphotropic phase boundary~MPB!,
is an almost vertical line in thex2T plane at aboutx
50.48. Haunet al.4 have successfully extended the Devo
shire model to the case of PZT by including the AFE a
AFD degrees of freedom in the phenomenological free
ergy, still including only terms up to sixth order overall. Th
model successfully described the simple R–T transition t
was understood to occur belowTc at the MPB.

As it happened, a surprise was in store. By working w
highly purified and carefully prepared samples of PZT, N
heda and co-workers have recently shown5–8 that a sliver of
monoclinic ~M! phase actually interposes itself between t
R and T phases in a very narrow composition range~of order
3%–4% inx). That is, at least below;100 °C, the transition
is first from T to M at anxc2 between about 0.48 and 0.5
~depending on temperature!, and then from M to R atxc1
.0.47, with decreasingx. The orientation ofP is, respec-
tively, along @001#, @uuv# (u,v), and @111# in the T, M,
and R phases, respectively. The experiments have not
clarified whether or not a direct T–R transition occurs in t
higher temperature range 100 °C,T,Tc , or whether the
sliver of M phase instead persists up to the Curie tempera
Tc.370 °C. Neither the Devonshire theory1 nor the modifi-
cation of Haunet al.4 predicted the possible occurrence
the M phase. On the other hand, simulations based o
first-principles effective Hamiltonian approach9 have very
recently provided confirmation of the existence of the
phase in just the observed composition range.10

We make a brief aside to establish notation. In the
phase~space groupPm3m), P50. WhenP is constrained to
©2001 The American Physical Society08-1
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a symmetry axis lying along@001#, @111#, or @011#, the re-
sulting phase and space-group labels become T (P4mm), R
(R3m), or O (Amm2), respectively. Similarly, the M phase
arise whenP is confined to a mirror plane. We can distin
guish three cases: MC (Pm), in whichP is along@0uv#; and
MA , and MB ~both Bm, sometimes also denotedCm) in
which P lies along@uuv#, with u,v andu.v, respectively.
The newly observed phase of PZT is of type MA .7,8 If P is
unconstrained by symmetry, strain coupling leads to a
clinic phase (P1). This exhausts the possible reduce
symmetry states of a cubic perovskite crystal generated
the emergence a single nonzero ferroelectric order param
although other phases can occur if AFE and AFD distortio
are also present.

Relatively few examples are known of low-symmetry fe
roelectrics in whichP is only constrained to a symmetr
plane, or in whichP is unconstrained by symmetry. Th
discovery of theMA phase in a cubic perovskite is thus
considerable note, even aside from the fact that it had b
missed for so long and aside from the potential importa
of this phase for understanding the large piezoelectric
sponse in PZT.6

The failure of the phenomenological theories
Devonshire1 and Haunet al.4 to describe the existence of th
observed MA phase raises an interesting question: Wha
the simplest and most natural phenomenological model
doespredict such a monoclinic phase? Recent work of So
Filho et al.11 confirms that the sixth-order Devonshire expa
sion does not allow for the occurrence of a monoclinic ph
and suggests instead a model in which the vanishing o
shear elastic constant at the critical temperature drives
transition to the MA phase. However, this requires the intr
duction of an additional instability that is unrelated to t
ferroelectric one.12 That this is unnecessary is demonstra
by the work of Bellaiche, Garcı´a, and Vanderbilt.10 In their
simulations, the shear moduli are taken as temperature i
pendent, and yet the transition to the monoclinic phase
occurs, driven by the tilting of the ferroelectric polarizatio
away from the symmetry axis.

Suspecting instead that the problem is simply related
the truncation of the expansions of Devonshire1 and Haun
et al.4 to sixth order, we consider the addition of terms
eighth and higher order to the Devonshire model. The
lowing questions then arise. At what order in the expans
do monoclinic phases first appear in the phase diagr
And, for that matter, at what order do triclinic phases fi
appear?

The phase diagram of such a model consists of field
the parameter space of the model~labeled C, T, O, R, M,
etc.! within which the order parameter has the specified sy
metry ~that is, the absolute minimum of the free energy o
curs at a point in the order-parameter space of that sym
try!. On a trajectory that crosses a phase boundary in
phase space, that global minimum can change into a l
minimum, a saddle point, or a maximum, or simply disa
pear. Understanding how the set of critical or station
points of the free energy~its minima, saddle points, an
maxima in the order-parameter space! varies with the param-
eters of the model can thus be an important aid in und
09410
i-
-
y

er,
s

en
e
-

s
at
a

-
e
a

he

d

e-
ill

o

f
l-
n
?

t

in

-
-
e-
e
al
-
y

r-

standing the phase diagram. So, in addition to searches
the global minima by direct computation, we use here a
pological analysis of the Devonshire theory to elucidate
critical-point structure of the free energy and answer
above questions.

We show here that the simplest extension of the Dev
shire theory, to eighth order in the ferroelectric order para
eter, naturally admits all three kinds (MA ,MB ,MC) of mono-
clinic phases. Moreover, the eighth-order model ma
specific and testable predictions for the types of ph
boundaries that can occur. For example, it predicts that
R2MA and T2MA transitions should be of first and secon
order, respectively. On the other hand, we find that the mo
has to be extended all the way totwelfth order in order to
describe a triclinic ferroelectric phase.

We therefore suggest that the most natural explanation
the occurrence of the MA phase in PZT is that the free
energy surface is unusually anharmonic in this material, s
that the eighth-order terms play an important role. It is n
difficult to speculate why this might be the case. First, PZT
a disordered material; averaging over the chemical disor
which plays the role of a quenched random field, may tend
generate higher orders in the phenomenological energy
pansion. Second, as will be discussed in Sec. V, ther
considerable evidence that the ferroelectric transitions
PZT have a strong order–disorder character; mapping on
displacive picture may then also tend to generate high
order terms. And finally, of course, thermal fluctuations a
coupling to strain may play some role. In any case, we sh
below that once one accepts this simple hypothesis of
importance of eighth-order terms in the free-energy exp
sion, then the behavior of the monoclinic phase observe
experiments5,7,8 and simulations10 can be understood quit
naturally.

This paper is organized as follows. Section II establish
the notation used for the expansion of the free energy,
reviews the symmetry considerations that lead to a simpli
form of this expansion. The rules governing the numbers
types of stationary points that may occur in the ord
parameter space are reviewed in Sec. III. The behavior of
models obtained by truncating the expansion at higher
higher order~fourth, sixth, eighth, tenth, and twelfth! are
then carefully elucidated in Sec. IV. Section V gives a br
discussion of a microscopic model in which the T and
phases can be regarded as arising from fluctuations am
neighboring, symmetry-equivalent local MA states. Finally,
we conclude with a brief summary and discussion of futu
prospects in Sec. VI.

II. FORMALISM

We consider the case of a structural phase transition g
erned by a single continuous vector order parameteru, such
that the free energy

F~u,s i ,T!5E~u,h i ,S!2(
i

s ih i2TS ~1!

is symmetric with respect to operations of the cubic po
group. Heres i and h i are the stress and strain tensors
8-2
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MONOCLINIC AND TRICLINIC PHASES IN HIGHER- . . . PHYSICAL REVIEW B 63 094108
Voigt notation, andT and S are temperature and entrop
respectively. We have in mind primarily the case in whichu
is the ferroelectric polarizationP in a member of the cubic
perovskite class, such as BaTiO3 or PZT, but the use of the
symbolu serves as a reminder that the formalism applies
a variety of other cases as well. For a crystal with stress-
boundary conditions at some given temperature, we can
pand

F~u!5C0001C200~ux
21uy

21uz
2!1C400~ux

41uy
41uz

4!

1C220~ux
2uy

21ux
2uz

21uy
2uz

2!1C600~ux
61uy

61uz
6!

1C420~ux
4@uy

21uz
2#1uy

4@ux
21uz

2#1uz
4@ux

21uy
2# !

1C222ux
2uy

2uz
21 . . . , ~2!

where terms up to sixth order inu have been written explic
itly, and the coefficients have been renormalized to subsu
the couplings to strain.

For the ferroelectric phases, we simplify matters furth
by focusing on the energy as a function of theorientationof
the vector order parameter and introducing the function

G~ û!5min
ui û

F~u!. ~3!

ThusG(û) represents the ground-state energy subject to
constraint that the order parameter has given orientation
most cases of interest, it is reasonable to expect thatG(û)
will be a smooth function ofû.13 In this case, and suppres
ing the uninteresting constant term in the expansion, it
lows that

G~ û!5a4g41a6g61a8g4
21a10g4g61a12g4

31a128 g6
21 . . . ,

~4!

where

g4~ û!5x2y21x2z21y2z2, g6~ û!5x2y2z2 ~5!

and û5(x,y,z) with x21y21z251. All independent,
symmetry-allowed terms up to twelfth order are explici
given in Eq.~4!; higher orders will not be needed here.

The particular form of the cubic invariants appearing
Eq. ~4! is largely arbitrary. For example, one could use t
‘‘kubic harmonics’’14 instead. In Sec. IV D, we shall mak
use of the expansion of Eqs.~4! and~5! above. However, for

TABLE I. Values of the cubic invariant functions defined
Eqs.~5! and~7!, evaluated at tetragonal~T!, rhombohedral~R!, and

orthorhombic~O! orientations of the order parameterû.

F(û) F(T) F(R) F(O)

g4 0 1/3 1/4
g6 0 1/27 0
f 4 0 4 3
f 6 0 0 1
f 8 0 0 0
09410
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the presentation of numerical results to be given in S
IV C, we find it more convenient instead to use the expa
sion

G~ û!5c4f 41c6 f 61c8 f 81 . . . , ~6!

where

f 4~ û!512g4 ,

f 6~ û!54g4236g6 , ~7!

f 8~ û!548g4
2212g4236g6 .

Aside from normalization constants, which are chosen
make the range of each function roughly of order unity, t
choice can be uniquely defined by the following requir
ments.~i! The invariantf n contains no terms of order highe
thann. ~ii ! All three invariants vanish identically for a ‘‘te
tragonal’’ ~T! value of the order parameter, e.g.,û5(100).
~iii ! f 6 and f 8 still vanish for a ‘‘rhombohedral’’~R! value of
the order parameter, e.g., (111)/A3. ~iv! f 8 alone vanishes
for an ‘‘orthorhombic’’ ~O! value of the order paramete
e.g., (110)/A2. The values of these functions evaluated
symmetry directions are summarized in Table I for later r
erence. Requirement~ii ! just reflects an arbitrary choice o
zero; requirements~iii ! and ~iv! simplify some later discus-
sion. For example, phase boundaries at whichG(T), G(R),
andG(O) become degenerate in pairs are easily located~see
Sec. IV C!.

A few comments about the transition fromF(u) to G(û)
in Eq. ~3! are in order. First, our ‘‘reduced’’ theory in term
of G(û) can only describe the transitions among the fer
electric phases, not the transition to the high-temperature
bic phase (u50). Second, the minimization over the magn
tude of u in Eq. ~3! generally introduces higher orders in
the reduced theory. For example, truncation of Eq.~2! at
sixth order may still lead to terms of eighth and higher ord
in Eqs. ~4! and ~6!. Thus a statement about what kinds
critical points can occur simultaneously in annth-order ver-
sion of the reduced theory does not necessarily carry ove
the nth-order version of the standard Devonshire theo
Nevertheless, a statement that a certain minimum orde
expansion is needed for the existence of a certain kind
stationary point in the reduced theorydoescarry over to the
standard Devonshire theory.15 For example, we show late
that the reduced theory must be carried to eighth orde
allow for a monoclinic minimum, i.e., an equilibriumu lying
in a (11̄0) plane. Then the same statement applies to
standard Devonshire theory. Suppose thatu0 is the magni-
tude ofu at the minimum, and letG0(û)5F(u0û); thenG0
must have a monoclinic minimum. ButG0 is also of no
higher than eighth order, and so admits only the same typ
minima as doesG.15

III. TOPOLOGICAL CONSIDERATIONS

The rules governing the numbers and types of critical
stationary points of a scalar function defined on a continu
8-3
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DAVID VANDERBILT AND MORREL H. COHEN PHYSICAL REVIEW B 63 094108
manifold emerge from a branch of algebraic topology cal
Morse theory or, equivalently, the calculus of variations
the large.16 These rules have proved useful in analyzing l
tice vibration spectra17 and the excitation spectra of crysta
line materials generally. They have not, however, enjoy
the broad application in condensed matter physics that m
have been expected from these early successes.

The rules take the form of a set of inequalities and o
equality. The latter is the most powerful, and we confi
ourselves to considering only it explicitly.G(û) is an ana-
lytic function defined on the surface of a sphere, a clo
two-dimensional manifold of genus zero, for which th
equality becomes

N02N11N252, ~8!

where N0 , N1, and N2 are the number of minima, sadd
points, and maxima, respectively. This formula assumes o
analyticity in G(û) and that its Hessian has no vanishi
eigenvalues at the critical points.

Because the functionG(û) has cubic symmetry, any sta
tionary points that occur must be members of symme
related families of stationary points. Thus it is natural
focus attention on an irreducible wedge corresponding
1/48 of the unit sphere, in terms of which Eq.~8! can be
rewritten as

(
j

njg j52, ~9!

wherej runs over the stationary points located in the inter
or on the boundary of the irreducible wedge,nj is a degen-
eracy factor counting the number of images of the station
point generated by the cubic symmetry group operations,
g j is 11 for a maximum or minimum and21 for a saddle
point. Symmetry requires only that there be stationary po
at T, O, and R; those at T and R must be maxima or min
while that at O can be of any type. Such a symmetry se
stationary points may or may not be large enough to sat
the Morse relations as well. A set which contains the sm
est number of critical points satisfying both the topologic
and symmetry requirements is denoted a minimal set.17

This type of analysis is illustrated in Fig. 1. Figure 1~a!

shows an arbitrarily chosen functionG(û) corresponding to
c45c650 andc8521 in Eq. ~6!, having maxima at T, R,
and O; saddle points on the lines connecting T–O and O
and a minimum on the segment connecting T–R. Figure 1~b!
specifies the notation that we shall use to identify the sy
metry points and lines. These are chosen to correspond t
labels of distorted crystal structures~tetragonal, rhombohe
dral, or orthorhombic for the symmetry points; monoclinic
type ‘‘A,’’ ‘‘B,’’ or ‘‘C’’ for the symmetry lines; and tri-
clinic for the case ofû pointing to the interior of the wedge!.
The corresponding degeneracy factorsn are given in Fig.
1~c!. The overall behavior of the function inside the wedge
summarized in Fig. 1~d!, in which the stationary points ar
marked by symbols that are open, shaded, or filled
maxima, saddle points, or minima, respectively. In this p
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ticular example, it can easily be seen that Eq.~9! is satisfied
(61811222422412452).

Using Eq. ~9!, one can begin enumerating the possib
topological diagrams for the cubic system. Figures 2~a! and
2~d! show the two possible diagrams in which there are o
three stationary points in the irreducible wedge, the only p
sible minimal sets. In Fig. 2~a! the function has a unique
minimum at T, so the crystal ground state would be tetra
nal. A similar situation holds for the rhombohedral case
Fig. 2~d!. Figures 2~b!, 2~c!, 2~e!, and 2~f! show four of the

FIG. 1. ~a! Contours of constantG(û)52 f 8(û) on the unit
sphere.~b! Labels for symmetry points and lines of the irreducib
wedge.~c! Corresponding degeneracy factorsn indicating number
of images on the full unit sphere.~d! Summary representation of th

behavior ofG(û), in which open, shaded, and filled symbols re
resent maxima, saddle points, and minima ofG, respectively. Ar-
rows indicate ‘‘downhill’’ flow lines.

FIG. 2. Sample topologies giving rise to tetragonal~a!–~c!,
rhombohedral~c!–~e!, and orthorhombic~e!–~f! phases. Open
shaded, and filled symbols represent maxima, saddle points,
minima, respectively.
8-4
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six configurations that can exist when there are exactly f
stationary points in the wedge.~Two others, similar to Figs
2~b! and 2~e! but with the role reversals T↔R and
MB↔MC, are not shown.! In Fig. 2~c! there are two local
minima, so that the ground state could be of type T or
depending on which minimum is deeper; a first-order tran
tion between T and R may occur by a crossing of
minima. The simplest configuration leading to an orthorho
bic ground state is shown in Fig. 2~f!.

In order to arrive at configurations corresponding
monoclinic or triclinic phases, more than four stationa
points are required. Figures 3~a!–3~c! illustrate possible con-
figurations for monoclinic phases of type A, B, and C,
which the order parameter lies on the T–R, R–O, and O
lines, respectively. Figure 3~d! illustrates a possible triclinic
phase. It is straightforward to check that Eq.~9! is satisfied
for each configuration in Figs. 2 and 3.

Of course, if the expansion of Eq.~4! or ~6! is truncated at
a certain order, the possible types of topological behav
will be limited by the enforced ‘‘smoothness’’ of the func
tions allowed at that order. The purpose of the followi
section is to explore precisely this issue, i.e., to clarify w
types of phases and phase transitions can occur at each
in the expansion. With this information in hand, one can th
easily determine what is the minimal model needed to st
a particular physical phenomenon of interest.

IV. RESULTS

A. Fourth-order theory

If the expansion~6! is truncated at fourth order, the onl
nonconstant cubic invariant isf 4 of Eq. ~7!. The T or R
phase is favored, as in Figs. 2~a! or 2~b!, if c4.0 or c4,0,
respectively. A transition between T and R phases occur
c450, but this transition is unphysical because the ene
surface is perfectly flat at the transition. This degenerate
havior is an artifact of the truncation to fourth order.

B. Sixth-order theory

At sixth order in the expansion~6!, the behavior is gov-
erned by the two coefficientsc4 andc6. Clearly a common

FIG. 3. ~a!–~d! Sample topologies giving rise to monoclin
phases A, B, and C, and the triclinic phase, respectively.~e! Degen-
erate minimum~heavy solid curve! that can occur whenb53p/4.
~f! Degenerate minimum~heavy solid line! that occurs fora
5tan21(3) andb5p. Open, shaded, and filled symbols repres
maxima, saddle points, and minima, respectively.
09410
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rescaling of the coefficients by a positive scale factor is
relevant, so without loss of generality we may setc4

21c6
2

51. It is then convenient to let

c45cos~a!, c65sin~a!. ~10!

By doing numerical calculations and making plots such
that shown in Fig. 1~a!, we find that only three phases exi
at this level. For2tan21(3),a,p/2, the system is in the T
ground state; forp/2,a,5p/4, the system is in the R
ground state; and for 5p/4,a,2p2tan21(3) the system is
in the O ground state. Figure 2 illustrates the sequence
topologies traversed, asa is increased. Starting froma5
2tan21(3), onefinds T phases corresponding to Figs. 2~a!–
2~c! consecutively, until a first-order transition occurs to t
R state ata5p/2. Then one finds R phases as illustrated
Figs. 2~c!–2~e! until a first-order transition occurs to the O
phase ata55p/4. Finally, O phases corresponding to Fig
2~e! and 2~f! are found asa is increased further up to 2p
2tan21(3). The transition from the O to the T phase
degenerate in the sense that the energy surface become
actly flat along the entire MC symmetry line at the criticala
~this being an artifact of truncation to low order!.

It is important to emphasize that no monoclin
phase is possible in the sixth-order model. In t
rangep1tan21(3/2),a,2p2tan21(3) ~i.e., 1.3128p,a
,1.6024p!, in which such a 1D local minimum appea
along the MA symmetry line, it is always unstable in th
second dimension~i.e., it is a saddle point!, and the true
minimum is at the O point, as in Fig. 2~f!.

Further details of the sequence of topologies and
boundaries between them is given in the Appendix.

C. Eighth-order theory

When the model of Eq.~6! is carried to eighth order, it no
longer becomes profitable to enumerate every possible to
ogy, as was done above for the sixth-order theory. Inste
we choose to focus just on the ‘‘phase diagram’’ that is g
erated by finding the groundstate symmetry as a function
the parametersc4 , c6, and c8. A common scaling of the
magnitudes of these coefficients is again unimportant, so
can describe the phase diagram in terms of two dimens
less parameters that we may take as

c45cos~a!, c65sin~a!cos~b!, c85sin~a!sin~b!,
~11!

where 0,a,p and 0,b,2p. From this point of view, the
‘‘parameter space’’ is just the unit sphere determined by
lar and azimuthal anglesa andb, respectively.

Figure 4 shows the phase diagram that emerges fro
careful numerical study of the minimization of Eq.~6! as a
function ofa andb. The plot is a mapping of the unit spher
onto the page. The points at the ‘‘north’’ and ‘‘south’’ pole
(a50 anda5p) are the only ones accessible in the fourt
order theory~Sec. IV A!; the dotted vertical lines atb50
and b5p correspond to the locus of points in parame
space that were explored by the sixth-order model~Sec.
IV B !.

t
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As can be seen from Fig. 4, six of the seven poss
phases~i.e., possible symmetries of a non-zero order para
eter! are accessed by the eighth-order model. In addition
the T, R, and O phases that appeared already at sixth o
all three monoclinic phases (MA , MB , and MC) are now
stable in some region of the phase diagram. However,
areas covered by the MC and especially MB regions are rela-
tively small, so these phases may be harder to find in
systems than the MA phase.

Solid and dashed phase boundaries indicate transition
first and second order, respectively, as determined num
cally. According to Landau theory, there are two necess
conditions for a transition to be of second order:~i! the sym-
metry group of one phase must be a subset of the symm
group of the other,G,G0; and~ii ! from the order-paramete
displacements that lead from the high-symmetry to the lo
symmetry phase, it should be impossible to construct a th
order invariant ofG0.18 Transitions of types T–R, T–O, an
O–R are necessarily first-order because of condition~i!, and
transitions from the R phase to MA or MB are first-order
because of~ii !.19 As can be seen from Fig. 4, these are p
cisely the boundaries that were found to be of first order.
others are found to be of second order, with the exception
the MA2MB and MA2MC boundaries, which form a vertica
line at b53p/4 indicated by gray shading in the figur
Along this line, one finds a degenerate minimum connect
MA and MC phases, as shown in Fig. 3~e!, for 0.259p,a
,0.640p, and a similar degenerate minimum connecting MA
and MB phases for 0.640p,a,0.740p. The degenerate be
havior can be traced to the fact thata650 along the lineb
53p/4. The triple point connecting the T, O, and MC phases
ata5tan21(1/3)50.102p andb5p is also a point at which
a degenerate minimum occurs, as shown in Fig. 3~f!. The
degenerate behaviors are artifacts of the eighth-order tru
tion, as will be explained more fully in Sec. IV D. Finally
the reader is reminded that because the theory is based
single polar orientational order parameter, Eq.~3!, we do not

FIG. 4. Phase diagram in the space of parametersa andb of the
eighth-order theory as defined in Eq.~11!. Solid and dashed lines
are first-order and second-order phase boundaries, respectively
vertical grey line and the grey dots indicate cases for which deg
erate minima occur. Fine vertical dotted lines indicate the dom
of the sixth-order theory.
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have the ability to describe transitions to or from t
paraelectric C phase, nor can we describe the more com
AFE or AFD phases.

The variation of some physical variable, such as tempe
ture, composition, or pressure, will correspond to a variat
of the parametersa andb of the model in a way that is no
easy to predicta priori. For BaTiO3 and KNbO3, in which
the observed phase transition sequence isR–O–T–Cwith
increasing temperature, it must be the case that the sys
traverses a roughly vertical trajectory on the phase diag
of Fig. 4, somewhere in the rangep,b,3p/2. ~Insofar as
eighth-order terms are small for these systems, the trajec
should be nearb5p.! The R–O–T sequence can be visua
ized as traversing Figs. 2~d!–2~f! and 2~a!, in that order.

On the other hand, systems such as PZT (PbZr12xTixO3)
that exhibit a morphotropic phase boundary~MPB!, i.e., an
R–T transition as a function of compositionx, evidently
cross the first-order R–T phase boundary in the vicinity
b50 with increasingx. If this trajectory passes to the righ
of the triple point connecting R, T, and MA phases ata
5p/2, b5tan21(1/3)50.102p in Fig. 4, then the phase
transition sequence becomes R2MA2T, as recently ob-
served experimentally.5,7,8 The narrowness of the range o
MA phase, only a few percent inx, suggests that the trajec
tory passes rather close to the triple point. In fact, there
strong experimental indications of the possible existence
triple point in the x2T phase diagram of PZT nearx
.0.47 andT.100 °C.5,7,8 Thus it may be that the behavio
near the triple point can be explored experimentally in
PZT system.

Using the topological analysis introduced earlier, we c
now clarify the nature of the T2MA2R transition sequence
near the triple point. Referring to Fig. 5, we imagine trave
ing a downward trajectory of increasinga at fixedb, slightly
to the right of the triple point. Starting deep in the T pha
Fig. 2~a!, a saddle point detaches from the O point a
traverses the MB line toward the R point, Fig. 2~b!. After it
passes through the R point and emerges on the ‘‘other si
~on the MA line!, we find ourselves in the situation of Fig
5~a!, the R point having been converted to a local minimu
Up to this point, the global minimum remains at T. Next, t
T point converts from a local minimum to a local maximum
with the simultaneous emission of a saddle point alongC
and a local minimum along MA , as shown in Fig. 5~b!. This
event corresponds to the second-order T2MA transition. The
first-order MA2R transition then occurs by the crossing
the energies of the local minima of Fig. 5~b!. Once in the R
phase, the local minimum and saddle point on the MA line

he
n-
in

FIG. 5. Topologies encountered in the T2MA2R transition se-
quence near the triple point.~a! Topology of T phase near the
second-order T2MA transition.~b! Topology of MA phase and, as
well, of R phase near the first-order MA2R transition.~c! Topology
occurring deeper in the R phase.
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annihilate one another to give Fig. 5~c!. Finally, deep in the
R phase, the MC saddle point eventually arrives at O, givin
rise to the situation of Fig. 2~d!.

It should thus be emphasized that the present the
makes a definite prediction about the nature of the transit
that occur in the T2MA2R transition sequence. We ca
predict that, if it were possible to scan with decreasingx at a
temperature below that of the triple point, one would fi
find a continuous rotation of the polarization from@001# into
the (11̄0) plane starting at a criticalxc2, and then a discon
tinuous jump to the@111# direction when there is a crossin
of the free energies of the MA and R phases atxc1. Unfortu-
nately, the fact that the T2MA , and especially the R2MA
boundaries lie almost vertically in the experimentalx2T
plane may make it difficult to test this prediction, sincex can
only be varied by preparation of multiple samples. Nevert
less, this scenario seems to be supported by the nume
simulations of Ref. 10.

It is important to note that a triclinic phase does not oc
anywhere in the phase diagram of the eighth-order mo
However, we do note the possibility of observing new mon
clinic phases of types MB and MC in a region nearb
.0.8p. In fact, the sixth-order model~vertical dotted line at
b5p) comes very close to yielding a monoclinic MC phase
near the triple point~gray dot ata5tan21(3), b5p) where
the MC, T, and O phases are in equilibrium. If a system su
as BaTiO3 or KNbO3 could somehow be perturbed so th
the variation with temperature would carry the system o
trajectory passing to the left of this triple point in Fig. 4, th
a novel R2O2MA2T2C ~or even R2MB2O2MA2T
2C) transition sequence might be observed. However, to
knowledge, no MB or MC phase has ever been observed in
cubic perovskite system.

D. Higher-order expansions

We have seen that the eighth-order expansion still d
not allow for the appearance of a triclinic equilibrium pha
for any parameter values. It is natural, then, to ask at w
higher order in the expansion a triclinic phase can first occ
The answer is that the expansion must be carried totwelfth
order before a triclinic phase can appear.

Suppose that a triclinic phase is the ground state; then
minimum of G occurs at a pointû0 located in the interior of
the irreducible wedge, as illustrated in Fig. 3~d!. Letting

G̃~ û!5G~ û!2G~ û0!,

g̃4~ û!5g4~ û!2g4~ û0!, ~12!

g̃6~ û!5g6~ û!2g6~ û0!,

the expansion Eq.~4! can be rewritten as

G̃~ û!5ã8g̃4
21ã10g̃4g̃61ã12g̃4

31ã128 g̃6
21 . . . , ~13!
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where theãn are trivial linear combinations of thean . To
drop theã4 and ã6 terms, we have used the fact thatG(û)
must be stationary atû0. ~For this, we also need that th
gradients ofg4 andg6 should never vanish or become pa
allel at an interior point of the irreducible wedge; this
straightforward to confirm.!

It is now evident that if expansion~13! is truncated at
eighth order, then pointû0 is not an isolated minimum. In-
stead, it belongs to a degenerate locus of minima corresp
ing to g̃450, i.e., to a contour of the functiong4(û). This is
the situation illustrated in Fig. 3~e!. It occurs whena650,
i.e., whenc61c850, corresponding to the gray vertical lin
at b53p/4 in Fig. 4.

If the expansion is carried to tenth order, then it is cle
from Eq.~13! thatG̃ still vanishes on this same contour. Th
two-dimensional Hessian matrixHmn5d2G/dûm dûn then
takes the form

H5S 0 d

d eD , ~14!

where indicesm51 and 2 correspond to the directions pa
allel and perpendicular to theg4 contour, respectively.d
Þ0 as long asã10Þ0, in which case detH,0. Thus, at tenth
order, the stationary pointû0 cannot be a minimum; instead
it is generally an isolated saddle point.

Finally, it is clear that the pointû0 can be a local mini-
mum if the expansion is carried to twelfth order. Suppo
ã105ã1250 and ã8 and ã128 are positive; then,G̃5ã8g̃4

2

1ã128 g̃6
2 is obviously positive definite, andû0 is a true iso-

lated ~global! minimum.
Concluding this section, we find that it is necessary to

to surprisingly high order in the free-energy expansion
order to stabilize a ferroelectric state in which there are
symmetry constraints on the order parameterP. Specifically,
we find that cubic invariants oftwelfth or higher order have
to be included to stabilize such a triclinic phase. We co
clude that the discovery~or synthesis! of a material having
such behavior may be challenging, but is by no means
possible.

V. A MICROSCOPIC MODEL

When structural transitions have some order-disor
character, a model free energy@e.g.,~2! or ~6!# expressed as
a function of a macroscopic order parameter~e.g., u or û)
provides little insight into the local structural fluctuation
that underlie the transitions. In such a case, a more appro
ate microscopic picture of the high-symmetry phase may
one in which local regions have undergone a symme
lowering structural distortion, but in such a way that lon
range order has not set in. For example, the description of
phase transition sequence of BaTiO3 and KNbO3 in terms of
the well-known ‘‘eight-site model’’20 assumes the presenc
of random local rhombohedral displacements in the ort
8-7
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rhombic, tetragonal, and cubic phases. In the present c
Noheda et al. have concluded from their own structur
analysis of PZT,5,7,8 and that of Corkeret al. of rhombohe-
dral PZT,21 that there may be random localmonoclinicdis-
placements which order variously to yield the tetrahed
rhombohedral, or monoclinic phases near the morphotro
phase boundary. One could then describe the system in t
of fluctuations between minima of a ‘‘24-site model.’’

To make these ideas more precise, suppose that the
displacements of Nohedaet al. arise from an optical branch
of the phonon spectrum, and letul be the vector ‘‘local mode
amplitude’’ for that branch within thel th unit cell.9 Take as
a model of the free energy

F@u#5(
l

f ~ul ! 1
1

2
( 8
lm

f lm~ul ,um!. ~15!

The in-cell energyf is presumed to be strongly nonlinear; th
inter-cell couplingf lm may either be bilinear inul andum or
of higher order.f is also presumed to dominate thef lm so
that, to a good approximation, its global minima establish
possible magnitude and orientationsul

a of ul . f (ul) can be
subjected to precisely the same methods of analysis as
plied toF(u) in Secs. II–IV, with parallel results. Theul

a so
obtained can then be substituted intoF in Eq. ~15!, yielding

F@a#5F0 1
1

2 ( 8
lm

f lm~ul
a ,um

b !. ~16!

This can be regarded as a 24-site version of theq-state Potts
model.

A statistical analysis can be carried out for various for
of f lm ~e.g., bilinear! to capture the cubic~completely disor-
dered!, tetragonal~partially disordered!, rhombohedral~par-
tially disordered!, and monoclinic~fully ordered! phases of
the case thatul

a takes on all of the 24 symmetrically equiva
lent monoclinic displacements. This type of analysis has
ready been carried out for orientational order–disorder tr
sitions and plastic crystals.22

VI. SUMMARY AND CONCLUSIONS

The original Devonshire theory1 gave a natural explana
tion for the appearance of tetragonal, orthorhombic, a
rhombohedral phases in materials, such as BaTiO3, based on
a sixth-order free-energy expansion. Here, we have c
firmed that these ferroelectric phases, in which the order
rameterP is confined to a symmetry axis, are the only on
permitted by the sixth-order version of the theory. Moreov
we have clarified the nature of the phases that may be
pected to appear at higher orders in the expansion. In
ticular, we have shown that the extension of the theory
eighth order allows one to describe, in addition, three kin
of monoclinic phase in whichP is confined only to a sym-
metry plane. To obtain a triclinic phase in whichP is uncon-
strained by symmetry, we have shown that a twelfth-or
version of the theory is needed. A topological analysis of
critical points of the energy surface has been used to fa
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tate the discussion of the relevant phases and phase tr
tions.

The present theory may provide some added insight
the phase behavior of conventional ferroelectrics such
BaTiO3, but the principal new results concern cases in wh
the eighth-order terms are important. In particular, the the
provides a natural explanation for the monoclinic MA phase
recently observed experimentally in PZT.5,7,8 It also predicts
that if a triple point of equilibrium between T, R, and MA

phases occurs, then it will be one at which first-order R2T
and R2MA boundaries meet a second-orderT2MA bound-

ary. That is,P will rotate into the (11̄0) mirror plane con-
tinuously from the T side but discontinuously from the
side.

Nohedaet al.8 have shown such a triple point in their Fig
6, in agreement with our analysis. However, they also sh
a region of coexistence of the T and MA phases in the sam
phase diagram. In a homogeneous sample, such a coe
ence region can be due to hysteresis arising from nuclea
barriers to a first-order phase transition. The eighth-or
theory predicts the T2MA phase boundary to be of secon
order, in which case there can be no hysteresis or nuclea
barriers. In principle, higher-order contributions to the fr
energy could be large enough to change the order of
T2MA transition. However, a more likely explanation is th
the samples studied by Nohedaet al. may be inhomoge-
neous. We note that these authors did not report hyster
but did report a two-phase coexistence region near the R
boundary between 500 and 575 K in Fig. 5 of Ref. 8. Attri
uting this to inhomogeneity, we estimate that the concen
tion variation may be of order 1% from the slope of th
R–T/M–T phase boundary in Fig. 6 of Ref. 8. Compositi
inhomogeneity of that magnitude would be sufficient to a
count for the T2MA phase coexistence shown in that figur

Finally, this work may provide some guidance in th
search for even more novel MC, MB , and triclinic ferroelec-
tric phases. It also may be of utility in other kinds of cub
systems with other kinds of vector order parameters, e
ferromagnetic systems.
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APPENDIX: DETAILS OF SIXTH-ORDER THEORY

The purpose of this Appendix is to give further deta
about the sequence of transitions that occurs in the si
order model of Sec. IV B. Recall that the behavior in th
model is governed by a single dimensionless parametea
defined via Eq.~10!.

There are ten critical values ofa that we can define as
8-8
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a1520.3976p52tan21~3!,

a250.2256p5tan21~6/7!,

a350.25p,

a450.3128p5tan21~3/2!,

a550.5p,

a650.6024p5p2tan21~3!,

a751.2256p5p1tan21~6/7!,

a851.25p,

a951.3128p5p1tan21~3/2!,

a1051.5p. ~A1!

The sequence of phases can be followed in Fig. 4 by trac
the vertical dotted lines; first from top to bottom atb50 for
0,a,p, and then from bottom to top atb5p for p,a
,2p.
tri

an
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In the T phase, the system exhibits the topology of F
2~a! for a1,a,a2; Fig. 2~b! for a2,a,a4; and Fig. 2~c!
for a4,a,a5. At a2, point O converts to a local maximum
and simultaneously a saddle point appears along theB

symmetry line. There is an irrelevant crossing of the R and
maxima ata3. At a4, R becomes a local minimum and th
saddle point switches from the MB to the MA symmetry line.
The transition from T to R is first order ata5.

The system falls into an R ground state corresponding
Fig. 2~c! for a5,a,a6; Fig. 2~d! for a6,a,a7; and Fig.
2~e! for a7,a,a8. The MA saddle point disappears and
is converted to a maximum ata6, and a new MB saddle point
emerges with the conversion of O to a local minimum ata7.
The transition from R to O is first order ata8.

Finally, an O phase occurs, as illustrated in Fig. 2~e!, for
a8,a,a9 and, as shown in Fig. 2~f!, for a9,a,a1

12p. The saddle point at MB vanishes and R is converted t
a local maximum ata9. There is an irrelevant crossing of th
T and R maxima ata10. The transition from O to T at
1.6024p is singular, in that the energy surface becomes
actly flat along the entire MC symmetry line.
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