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Monoclinic and triclinic phases in higher-order Devonshire theory

David Vanderbilt and Morrel H. Cohen
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019
(Received 19 September 2000; published 29 January)2001

Devonshire theory provides a successful phenomenological description of many cubic perovskite ferroelec-
trics such as BaTi@via a sixth-order expansion of the free energy in the polar order parameter. However, the
recent discovery of a novel monoclinic ferroelectric phase in the PZT system by NehatdAppl. Phys.

Lett. 74, 2059(1999 ] poses a challenge to this theory. Here, we confirm that the sixth-order Devonshire theory
cannot support a monoclinic phase, and consider extensions of the theory to higher orders. We show that an
eighth-order theory allows for three kinds of equilibrium phases in which the polarization is confined not to a
symmetry axis but to a symmetry plane. One of these phases provides a natural description of the newly
observed monoclinic phase. Moreover, the theory makes testable predictions about the nature of the phase
boundaries between monoclinic, tetragonal, and rhombohedral phases. A ferroelectric phase of the lowest
(triclinic) symmetry type, in which the polarization is not constrained by symmetry, does not emerge until the
Devonshire theory is carried to twelfth order. A topological analysis of the critical points of the free-energy
surface facilitates the discussion of the phase transition sequences.
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. INTRODUCTION temperatureT, that ranges from about 490°C &t=1 to

) ) _230°C atx=0. The transition occurs to the T phase for
Many of the most important and best studied ferroeIectrlcgreater than about 0.48, and to the R phase for smallat

materials adopt the simple-cubic perovskite structure at higlc]-< 150°C orx<0.1, some more complex phases involving
temperature and undergo structural phase transitions to dIﬁ'ntiferroelectric(AFE) or antiferrodistortive(AFD, i.e., in-

torted ferroelectric structures at lower temperature. Among/olving rotations of oxygen octahedralisplacements also
the best known simple compounds of this kind are BaTiO occur. The phase boundary between the simple T and R

and PbTiQ. Upon cooling, BaTiQ undergoes a sequence of .
ferroelectric transitions: first from the cubf€) to a tetrag- phases, known as_the morphotropm phase boun(4RB),
is an almost vertical line in thx—T plane at aboutx

onal(T); then to an orthorhombiO); and finally to a rhom- ™~ 4
bohedral(R) phase. Passing through this sequence, the po- 0.48. Haunet al.” have successfully extended the Devon-

larization P first vanishes in the C phase, and then become§hiré model to the case of PZT by including the AFE and
oriented in thg001], [011], and[111] directions in the T, 0, AFD degrees of freedom in the phenomenological free en-
and R phases, respectively. PbTithdergoes a single ferro- €ray. still including only terms up to sixth order overall. This
electric transition from the C to T phase. model successfully described the simple R—T transition that
In a classic 1948 paper, DevonsHireas able to explain Wwas understood to occur beloly, at the MPB.
the observed phases and phase transition sequence quiteAs it happened, a surprise was in store. By working with
naturally in terms of a phenomenological Landau-type ex-ighly purified and carefully prepared samples of PZT, No-
pansion of the free energy in terms of the ferroelectric ordeheda and co-workers have recently shéwrhat a sliver of
parameteiP. Making use of cubic symmetry and truncating monoclinic (M) phase actually interposes itself between the
the expansion to sixth order iR, Devonshire was able to R and T phases in a very narrow composition rafajerder
arrive at a simple model with only a single temperature-3%—4% inx). That is, at least below 100 °C, the transition
dependent second-order coefficient, and only threés first from T to M at anx., between about 0.48 and 0.51
temperature-independent higher-order coefficients. The pddepending on temperatyreand then from M to R akg;
larization P is the primary order parameter, and the crystal-=0.47, with decreasing. The orientation ofP is, respec-
lographic labelqT, R, etc) refer to the distortions induced tively, along[001], [uuv] (u<v), and[111] in the T, M,
by the polarization and the resulting strain. Despite its sim-and R phases, respectively. The experiments have not yet
plicity, this model could successfully reproduce the phaseclarified whether or not a direct T—R transition occurs in the
transition sequenée and the piezoelectric and other higher temperature range 1002 <T,, or whether the
propertied of BaTiO;. With a simple modification of the sliver of M phase instead persists up to the Curie temperature
anharmonic coefficients, the qualitative behavior of PBTiO T.=370°C. Neither the Devonshire thebnyor the modifi-
could be equally well reproduced. cation of Haunet al* predicted the possible occurrence of
However, the material that is currently in most wide- the M phase. On the other hand, simulations based on a
spread use for piezoelectric transducer and related applicéirst-principles effective Hamiltonian appro&chave very
tions is the solid solution PbZr,Ti,O;, commonly known recently provided confirmation of the existence of the M
as PZT. The standard understanding of the phase diagram phase in just the observed composition ratfge.
PZT has been as followsPZT undergoes a transition from  We make a brief aside to establish notation. In the C
the simple cubic C phase to a ferroelectric phase at a Curiphasespace grouf® m3m), P=0. WhenP is constrained to
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a symmetry axis lying alon§001], [111], or [011], the re- standing the phase diagram. So, in addition to searches for
sulting phase and space-group labels becom@4n{m), R  the global minima by direct computation, we use here a to-
(R3m), or O (AmnR), respectively. Similarly, the M phases pological analysis of the Devonshire theory to elucidate the
arise whenP is confined to a mirror plane. We can distin- critical-point structure of the free energy and answer the
guish three cases: M(Pm), in which P is along[Ouv]; and ~ @bove questions.
M, and M (both Bm, sometimes also denotedm) in We show here that the simplest extension of the Devon-
which P lies along[uuv ], with u<v andu>v, respectively. shire theory, to eighth order in the ferroelectric order param-
The newly observed phase of PZT is of typg M® If Pis  eter, naturally admits all three kinds (MMg,Mc) of mono-
unconstrained by symmetry, strain coupling leads to a triclinic phases. Moreover, the eighth-order model makes
clinic phase P1). This exhausts the possible reduced-SPecific and testable predictions for the types of phase
symmetry states of a cubic perovskite crystal generated b oundaries that can occur. For example, it predicts that the
the emergence a single nonzero ferroelectric order parametdf;~ Ma and T—My transitions should be of first and second
although other phases can occur if AFE and AFD distortion®rder, respectively. On the other hand, we find that the model
are also present. has to be extended all the way twelfth order in order to
Relatively few examples are known of low-symmetry fer- describe a triclinic ferroelectric phase. .
roelectrics in whichP is only constrained to a symmetry  We therefore suggest that the most natural explanation for
plane, or in whichP is unconstrained by symmetry. The the occurrence of the Mphase in PZT s that the free-
discovery of theM , phase in a cubic perovskite is thus of €nergy su_rface is unusually anharmo.nlc in this materlall, such
considerable note, even aside from the fact that it had beei@t the eighth-order terms play an important role. It is not
missed for so long and aside from the potential importancélifficult to speculate why this might be the case. First, PZT is
of this phase for understanding the large piezoelectric re@ disordered material; averaging over the chemical disorder,
sponse in PZT. which plays the role of a quenched random field, may tend to
The failure of the phenomenological theories of 9enerate higher orders .in the phenomenlological energy ex-
Devonshiré and Hauret al” to describe the existence of the Pansion. Second, as will be discussed in Sec. V, there is
observed M phase raises an interesting question: What jconsiderable evidence tha_t the ferroelectric tran§|t|ons in
the simplest and most natural phenomenological model thdtZT have a strong order—disorder character; mapping onto a
doespredict such a monoclinic phase? Recent work of Souz&iSplacive picture may then also tend to generate higher-
Filho et al*! confirms that the sixth-order Devonshire eXpam_order.terms. And finally, of course, thermal fluctuations and
sion does not allow for the occurrence of a monoclinic phas€0Upling to strain may play some role. In any case, we show
and suggests instead a model in which the vanishing of _Qelow that once one accepts thIS. simple hypothesis of the
shear elastic constant at the critical temperature drives thportance of eighth-order terms in the free-energy expan-
transition to the M phase. However, this requires the intro- SIon, then the behavior of the monaclinic phase observed in
duction of an additional instability that is unrelated to the €xPeriments™® and simulation’ can be understood quite
ferroelectric oné? That this is unnecessary is demonstrateghnaturally. _ . . .
by the work of Bellaiche, Garaj and Vanderbilt? In their This paper is organized as follpws. Section Il establishes
simulations, the shear moduli are taken as temperature ind&1€ notation used for the expansion of the free energy, and
pendent, and yet the transition to the monoclinic phase stilféviews the symmetry considerations that lead to a simplified
occurs, driven by the tilting of the ferroelectric polarization form of this expansion. The rules governing the numbers and
away from the symmetry axis. types of stationary points tha_t may occur in thel order-
Suspecting instead that the problem is simply related tfarameter space are rewewgd in Sec. Ill. The behay|or of the
the truncation of the expansions of Devonshiamd Haun ~Models obtained by truncating the expansion at higher and
et al? to sixth order, we consider the addition of terms of higher order(fourth, sixth, eighth, tenth, and twelftrare
eighth and higher order to the Devonshire model. The f0|_then ca_refully eIum_dated m_Sec. V. _Sect|0_n V gives a brief
lowing questions then arise. At what order in the expansiorfliscussion of a microscopic model in which the T and R
do monoclinic phases first appear in the phase diagramPhases can be regarded as arising from fluctuations among
And, for that matter, at what order do triclinic phases first€ighboring, symmetry-equivalent local JMstates. Finally,
appear? we concIU(_:Ie with a brief summary and discussion of future
The phase diagram of such a model consists of fields iPfOSPeCts in Sec. VI.
the parameter space of the modklbeled C, T, O, R, M,
etc) within which the order parameter has the specified sym- Il. FORMALISM
(r:r:;artsrya(ttf;a‘t)cl)sir,]g ?r? t?]tésglrlét:r_g];g?nu;]e?];g;i;ri? tir;?rggmorﬁe- We consid_er the case of a structural phase transition gov-
: . erned by a single continuous vector order parameteuch
try). On a trajectory that crosses a phase boundary in th
o . at the free energy
phase space, that global minimum can change into a loca
minimum, a saddle point, or a maximum, or simply disap-
pear. Understanding how the set of critical or stationary F(u,o;,T)=E(u,» ,S)—Z oini—TS 1)
points of the free energyits minima, saddle points, and '
maxima in the order-parameter spaearies with the param- is symmetric with respect to operations of the cubic point
eters of the model can thus be an important aid in undergroup. Hereo; and »; are the stress and strain tensors in
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TABLE I. Values of the cubic invariant functions defined in the presentation of numerical results to be given in Sec.
Egs.(5) and(7), evaluated at tetragondl), rhombohedralR), and |V C, we find it more convenient instead to use the expan-

orthorhombic(O) orientations of the order parameter sion

F(0) F(T) F(R) F(0) G(U)=cyfs+cefgtCgfgt ..., (6)
s 0 1/3 1/4 where

Os 0 1/27 0 R

f, 0 4 3 fa(u)=129,,

fe 0 0 1 R

o 0 0 0 fe(u)=49,— 3696, )

fg(U)=4895—129,— 369s.

Aside from normalization constants, which are chosen to
make the range of each function roughly of order unity, this

perovskite class, such as BaTiOr PZT, but the use of the choice can b(_a umquely deflngd by the following require-
ments.(i) The invariantf,, contains no terms of order higher

symbplu serves as a reminder that the formahsm applies tthan n. (ii) All three invariants vanish identically for a “te-
a variety of other cases as well. For a crystal with stress-free

boundary conditions at some given temperature, we can eitagonal” (T) value of the order parameter, e.gs(100).

Voigt notation, andT and S are temperature and entropy,
respectively. We have in mind primarily the case in which
is the ferroelectric polarizatio® in a member of the cubic

pand (iii) fg andfg still vanish for a “rhombohedral’(R) value of
the order parameter, e.g., (114p. (iv) fg alone vanishes
F(u) = Cooot Caoo( U5+ UZ+U2) + Cyoo(Ug+ Uy+u3) for an “orthorhombic” (O) value of the order parameter,
e.g., (110)42. The values of these functions evaluated at
+Ca0(UgUg + UgUZ + UguZ) + Cego(Ug+US +U3) symmetry directions are summarized in Table | for later ref-

erence. Requiremertti) just reflects an arbitrary choice of
zero; requirementsiii ) and (iv) simplify some later discus-
+C222u§u§u§+ L 2) sion. For example, phase boupdarigs at wtﬁ:(l’f), G(R),
andG(O) become degenerate in pairs are easily locéted
where terms up to sixth order inhave been written explic- Sec. IV Q.
itly, and the coefficients have been renormalized to subsume A few comments about the transition frof(u) to G(()

the couplings to strain. in Eq. (3) are in order. First, our “reduced” theory in terms

For th_e ferroelectric phases, we §|mpl|fy matters furtherof G(u) can only describe the transitions among the ferro-
by focusing on the energy as a function of trégentation of

the vector order parameter and introducing the function electric phases, not the transition to the high-temperature cu-
P 9 bic phase ¢=0). Second, the minimization over the magni-

tude ofu in Eq. (3) generally introduces higher orders into
the reduced theory. For example, truncation of E2). at
sixth order may still lead to terms of eighth and higher order

Thus G(Ui) represents the ground-state energy subject to th#? Eds. (4) and (6). Thus a statement about what kinds of
constraint that the order parameter has given orientation. |ﬁ_r|t|calf %(])mtsdcan g‘;ﬁur sm(wjultaneotusly In athl—lorder ver- t

. L ~~ " sion of the reduced theory does not necessarily carry over to
m.ost cases of lnteres_t, It 'S rliasongble to expect Gay the nth-order version of the standard Devonshire theory.
will be a smooth function ofl.™ In this case, and suppress-

. . . ; - - Nevertheless, a statement that a certain minimum order of
ing the uninteresting constant term in the expansion, it folynansion is needed for the existence of a certain kind of

4r .2 2 4r 2 2 4r. 2 2
+C420(ux[uy+uz]+uy[ux+uz]+uz[ux+uy])

G(u)=minF(u). (3)

ulu

lows that stationary point in the reduced theaipescarry over to the
- ) s standard Devonshire theoty.For example, we show later
G(u)=a494+a696+ 2592+ 100406 T 212921 a1206F -+ -, that the reduced theory must be carried to eighth order to
(4) allow for a monoclinic minimum, i.e., an equilibriumlying
where in a (110) plane. Then the same statement applies to the

standard Devonshire theory. Suppose thgis the magni-
04(U) =x?y?+x°22+y?7?, ge(u)=x%?z> (5  tude ofu at the minimum, and leBy(U) = F(uyl); thenG,
must have a monoclinic minimum. Bu®, is also of no

and u=(x,y,z) with x*+y?+z2=1. All independent, higher than eighth order, and so admits only the same type of
symmetry-allowed terms up to twelfth order are explicitly minima as doe€.*°

given in Eq.(4); higher orders will not be needed here.
The particular form of the cubic invariants appearing in IIl. TOPOLOGICAL CONSIDERATIONS
Eq. (4) is largely arbitrary. For example, one could use the
“kubic harmonics™* instead. In Sec. IV D, we shall make  The rules governing the numbers and types of critical or
use of the expansion of Eggl) and(5) above. However, for stationary points of a scalar function defined on a continuous
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manifold emerge from a branch of algebraic topology called (a) e
Morse theory or, equivalently, the calculus of variations in %&
7

rff*
\\_\\‘?’

r.
|
),

the large'® These rules have proved useful in analyzing lat-
tice vibration spectrd and the excitation spectra of crystal-
line materials generally. They have not, however, enjoyed
the broad application in condensed matter physics that might
have been expected from these early successes.

The rules take the form of a set of inequalities and one
equality. The latter is the most powerful, and we confine

ourselves to considering only it explicitha(u) is an ana-
lytic function defined on the surface of a sphere, a closed
two-dimensional manifold of genus zero, for which the
equality becomes
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where Ng, N4, andN, are the number of minima, saddle ————
points, and maxima, respectively. This formula assumes only

analyticity in G(ﬁ) and that its Hessian has no vanishing (b) R (o) 8
eigenvalues at the critical points. Ma " 24 0
Because the functio®(U) has cubic symmetry, any sta- Tri 8 48
tionary points that occur must be members of symmetry- X 6 .
related families of stationary points. Thus it is natural to Mg 9 24 12
focus attention on an irreducible wedge corresponding to R R
1/48 of the unit sphere, in terms of which E@) can be FIG. 1. (@ Contours of constanG(u)=—fg(u) on the unit
rewritten as sphere(b) Labels for symmetry points and lines of the irreducible

wedge.(c) Corresponding degeneracy factarsndicating number

of images on the full unit spheré&) Summary representation of the
2 ny=2, (99 behavior ofG(U), in which open, shaded, and filled symbols rep-
] resent maxima, saddle points, and minima&frespectively. Ar-

. . . . . .__rows indicate “downhill” flow lines.
wherej runs over the stationary points located in the interior

or on the boundary of the irreducible wedgg,is a degen- _ . _ .
eracy factor counting the number of images of the stationarficular example, it can easily be seen that E).is satisfied
point generated by the cubic symmetry group operations, antf +8+12—-24—24+24=2). . _
y; is +1 for a maximum or minimum ane 1 for a saddle ~_ Ysing Ea.(9), one can begin enumerating the possible
point. Symmetry requires only that there be stationary pointd®Pological diagrams for the cubic system. Figures) 2nd
at T, O, and R; those at T and R must be maxima or minim&(d) show the two possible diagrams in which there are only
while that at O can be of any type. Such a symmetry set ofhree stationary points m_the irreducible \_Nedge, the on_ly pos-
stationary points may or may not be large enough to satisfyiPlé minimal sets. In Fig. (&) the function has a unique
the Morse relations as well. A set which contains the smallfninimum at T, so the crystal ground state would be tetrago-
est number of critical points satisfying both the topological”?"- A S|m|!ar situation holds for the rhombohedral case of
and symmetry requirements is denoted a minimal Set. Fig. 2d). Figures 2b), 2(c), 2(e), and 2f) show four of the
This type of analysis is illustrated in Fig. 1. Figuréajl

shows an arbitrarily chosen functi@(u) corresponding to @ T (b) T () TR
c,=C=0 andcg=—1 in Eq. (6), having maxima at T, R,

and O; saddle points on the lines connecting T-O and O—R,;

and a minimum on the segment connecting T—-R. Figuig 1

specifies the notation that we shall use to identify the sym-
metry points and lines. These are chosen to correspond to the

labels of distorted crystal structuréetragonal, rhombohe- (d) R (e) RO f O
dral, or orthorhombic for the symmetry points; monoclinic of
type “A,” “B,” or “C” for the symmetry lines; and tri-

clinic for the case ofi pointing to the interior of the wedge
The corresponding degeneracy factorare given in Fig.
1(c). The overall behavior of the function inside the wedge is  FIG. 2. Sample topologies giving rise to tetragoral—(c),
summarized in Fig. @), in which the stationary points are rhombohedral(c)—(e), and orthorhombic(e)—(f) phases. Open,
marked by symbols that are open, shaded, or filled foshaded, and filled symbols represent maxima, saddle points, and
maxima, saddle points, or minima, respectively. In this parminima, respectively.
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(@) My j (% () Mq j
(d) Tri ?? (e) S S M Sp TE

FIG. 3. (a)—(d) Sample topologies giving rise to monoclinic
phases A, B, and C, and the triclinic phase, respectiyelyDegen-
erate minimum(heavy solid curvethat can occur whe=37/4.

(f) Degenerate minimumtheavy solid ling that occurs fora
=tan %(3) andB=. Open, shaded, and filled symbols represent
maxima, saddle points, and minima, respectively.

six configurations that can exist when there are exactly fou
stationary points in the wedgéTwo others, similar to Figs.
2(b) and 2e) but with the role reversals <FR and
Mg—M¢c, are not shown.In Fig. 2(c) there are two local
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rescaling of the coefficients by a positive scale factor is ir-
relevant, so without loss of generality we may sétk cé
=1. It is then convenient to let

Cs=coq ),

Ce=sin(a). (10)

By doing numerical calculations and making plots such as
that shown in Fig. (), we find that only three phases exist
at this level. For—tan 1(3)<a< /2, the system is in the T
ground state; form/2<a<5/4, the system is in the R
ground state; and for&/4< a<2m7—tan (3) the system is

in the O ground state. Figure 2 illustrates the sequence of
topologies traversed, as is increased. Starting fromx=
—tan (3), onefinds T phases corresponding to Fig&a)2

2(c) consecutively, until a first-order transition occurs to the
R state atw= /2. Then one finds R phases as illustrated in
Figs. 4¢c)—2(e) until a first-order transition occurs to the O
phase atwv=>5m/4. Finally, O phases corresponding to Figs.
2(e) and 2f) are found asx is increased further up to2
—tan (3). The transition from the O to the T phase is
degenerate in the sense that the energy surface becomes ex-
actly flat along the entire Msymmetry line at the criticadk

minima, so that the ground state could be of type T or R(this being an artifact of truncation to low order

depending on which minimum is deeper; a first-order transi-
tion between T and R may occur by a crossing of thephase

It is important to emphasize that no monoclinic

is possible in the sixth-order model. In the

minima. The simplest configuration leading to an orthorhom+ange 7+tan 1(3/2)<a<27—tan (3) (i.e., 1.3128<a«a

bic ground state is shown in Fig(f2

In order to arrive at configurations corresponding to
monoclinic or triclinic phases, more than four stationary
points are required. Figurega3—3(c) illustrate possible con-
figurations for monoclinic phases of type A, B, and C, in

<1.60247), in which such a 1D local minimum appears
along the M, symmetry line, it is always unstable in the
second dimensiori.e., it is a saddle poipt and the true
minimum is at the O point, as in Fig(f2.

Further details of the sequence of topologies and the

which the order parameter lies on the T-R, R—0, and O—boundaries between them is given in the Appendix.

lines, respectively. Figure(8) illustrates a possible triclinic
phase. It is straightforward to check that E) is satisfied
for each configuration in Figs. 2 and 3.

Of course, if the expansion of EG) or (6) is truncated at

C. Eighth-order theory
When the model of Eq6) is carried to eighth order, it no

a certain order, the possible types of topological behaviolonger becomes profitable to enumerate every possible topol-
will be limited by the enforced “smoothness” of the func- ©9Y: @ was done above for the sixth-order theory. Instead,

tions allowed at that order. The purpose of the followingWe ChoOse to focus just on the “"phase diagram” that is gen-
section is to explore precisely this issue, i.e., to clarify whaterated by finding the groundstate symmetry as a function of
types of phases and phase transitions can occur at each ordBf Parameters,, Ce, andcg. A common scaling of the

in the expansion. With this information in hand, one can therfn@gnitudes of these coefficients is again unimportant, so we
easily determine what is the minimal model needed to studfan describe the phase diagram in terms of two dimension-
a particular physical phenomenon of interest. ess parameters that we may take as

C,=Cog ),

IV. RESULTS Ce=sin(a)coy B), Cs=Sin(a)Sil“(B),(11)

A. Fourth-order theory ) ) )
where 0< < and 0< 8<2. From this point of view, the

If the expansion(6) is truncated at fourth order, the only “parameter space” is just the unit sphere determined by po-

noncopstant cubic inyarignt i, of Eq.. (7). The T or R lar and azimuthal angles and 3, respectively.

phase is favored, as in Figsia? or 2(b), if ¢,>0 orc,<0, Figure 4 shows the phase diagram that emerges from a
respectively. A transition between T and R phases occurs i refy| numerical study of the minimization of E@) as a
c,=0, but this transition is unphysical because the energy,nction of andB. The plot is a mapping of the unit sphere
surface is perfectly flat at the transition. This degenerate besntq the page. The points at the “north” and “south” poles
havior is an artifact of the truncation to fourth order. (a=0 anda= ) are the only ones accessible in the fourth-
order theory(Sec. IV A); the dotted vertical lines g8=0

and 8= correspond to the locus of points in parameter
space that were explored by the sixth-order mogfc.

IV B).

B. Sixth-order theory

At sixth order in the expansio(6), the behavior is gov-
erned by the two coefficients, andcg. Clearly a common
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(b) My/R (c) R
n/4 - ’/"\ N
T . T
I', \\\\
o ,Il Mclgr
/  Ma ! . . "
/2 L / FIG. 5. Topologies encountered in the-M,—R transition se-
/I 0 guence near the triple pointa) Topology of T phase near the
K second-order ¥ M, transition.(b) Topology of M, phase and, as
R A R well, of R phase near the first-order,M R transition.(c) Topology
kS occurring deeper in the R phase.
3n/4 |- — g ceep P
. Ms | have the ability to describe transitions to or from the
0 n/2 T 3n/2 paraelectric C phase, nor can we describe the more complex
B AFE or AFD phases.

The variation of some physical variable, such as tempera-
FIG. 4. Phase diagram in the space of parameteasd3 of the  ture, composition, or pressure, will correspond to a variation
eighth-order theory as defined in Ed.1). Solid and dashed lines of the parametera and 8 of the model in a way that is not
are first-order and second-order phase boundaries, respectively. Taﬁsy to predica priori. For BaTiQ, and KNbG,, in which
vertical grey line and the grey dots indicate cases for which degenghe observed phase transition sequencR4€—T—Cwith
erate m'inima occur. Fine vertical dotted lines indicate the domairincreasing temperature, it must be the case that the system
of the sixth-order theory. traverses a roughly vertical trajectory on the phase diagram
of Fig. 4, somewhere in the range<8<3w/2. (Insofar as
As can be seen from Fig. 4, six of the seven possibleeighth-order terms are small for these systems, the trajectory
phasedi.e., possible symmetries of a non-zero order paramshould be neag=#.) The R—O-T sequence can be visual-
etep are accessed by the eighth-order model. In addition tized as traversing Figs(@—2(f) and 2a), in that order.
the T, R, and O phases that appeared already at sixth order, On the other hand, systems such as PZT (Pbdri,O5)
all three monoclinic phases (M Mg, and M) are now that exhibit a morphotropic phase bound&PB), i.e., an
stable in some region of the phase diagram. However, thR—T transition as a function of compositiog evidently
areas covered by the Mand especially M regions are rela- cross the first-order R—T phase boundary in the vicinity of
tively small, so these phases may be harder to find in reg8=0 with increasingx. If this trajectory passes to the right
systems than the Mphase. of the triple point connecting R, T, and Mphases air
Solid and dashed phase boundaries indicate transitions ef 7/2, g=tan (1/3)=0.1027 in Fig. 4, then the phase
first and second order, respectively, as determined numeriransition sequence becomes-RI,—T, as recently ob-
cally. According to Landau theory, there are two necessargerved experimentalf/’® The narrowness of the range of
conditions for a transition to be of second ordérthe sym- M, phase, only a few percent iy suggests that the trajec-
metry group of one phase must be a subset of the symmettygry passes rather close to the triple point. In fact, there are
group of the otherGC G,; and (ii) from the order-parameter strong experimental indications of the possible existence of a
displacements that lead from the high-symmetry to the lowiriple point in the x—T phase diagram of PZT near
symmetry phase, it should be impossible to construct a third=0.47 andT=100°C>"® Thus it may be that the behavior
order invariant ofG,.'® Transitions of types T-R, T—0, and near the triple point can be explored experimentally in the
O-R are necessarily first-order because of conditiprand ~ PZT system.
transitions from the R phase to MMor Mg are first-order Using the topological analysis introduced earlier, we can
because ofii).° As can be seen from Fig. 4, these are pre-now clarify the nature of the ¥ M,— R transition sequence
cisely the boundaries that were found to be of first order. Allnear the triple point. Referring to Fig. 5, we imagine travers-
others are found to be of second order, with the exceptions dhg a downward trajectory of increasimgat fixed3, slightly
the My— Mg and My—M¢ boundaries, which form a vertical to the right of the triple point. Starting deep in the T phase,
line at B=3w/4 indicated by gray shading in the figure. Fig. 2@), a saddle point detaches from the O point and
Along this line, one finds a degenerate minimum connectingraverses the Mline toward the R point, Fig. ®). After it
M, and M- phases, as shown in Fig(e}, for 0.25% <« passes through the R point and emerges on the “other side”
<0.640m, and a similar degenerate minimum connecting M (on the M, line), we find ourselves in the situation of Fig.
and M phases for 0.640< «<<0.7407. The degenerate be- 5(a), the R point having been converted to a local minimum.
havior can be traced to the fact thej=0 along the lineB Up to this point, the global minimum remains at T. Next, the
=3/4. The triple point connecting the T, O, and-Mhases T point converts from a local minimum to a local maximum,
ata=tan 1(1/3)=0.1027 and 3= is also a point at which  with the simultaneous emission of a saddle point along M
a degenerate minimum occurs, as shown in Fi@). 3rhe  and a local minimum along M, as shown in Fig. ®). This
degenerate behaviors are artifacts of the eighth-order truncavent corresponds to the second-orderM, transition. The
tion, as will be explained more fully in Sec. IV D. Finally, first-order My,—R transition then occurs by the crossing of
the reader is reminded that because the theory is based ortl& energies of the local minima of Fig(. Once in the R
single polar orientational order parameter, B), we do not  phase, the local minimum and saddle point on thg Ive
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annihilate one another to give Figch Finally, deep in the  \here thea, are trivial linear combinations of tha,. To
R phase, the M saddle point eventually arrives at O, giving drop thea, anda, terms, we have used the fact tH&¢l)

rise to the situation of Fig. (8). . ~ .
g.@ ust be stationary atly. (For this, we also need that the

It should thus be emphasized that the present theorg' di q hould ish or b
makes a definite prediction about the nature of the transition radients ofg4 andge shou'd never vanish or become par-
allel at an interior point of the irreducible wedge; this is

that occur in the +Mj—R transition sequence. We can . :
predict that, if it were possible to scan with decreasiraeg a stralghtforward to conflrn)._ . .

temperature below that of the triple point, one would first It is now evident thiit if expansiofl3) is truncated at
find a continuous rotation of the polarization frgf01] into  eighth order, then pointy, is not an isolated minimum. In-
the (110) plane starting at a critical,, and then a discon- stead, it belongs to a degenerate locus of minima correspond-

tinuous jump to thg111] direction when there is a crossing ing t09,=0, i.e., to a contour of the functiogy(u). This is
of the free energies of the Mand R phases at;. Unfortu- the situation illustrated in Fig.(8). It occurs whenag=0,

nately, the fact that the TM,, and especially the RM,  i-€., whenc6.+ cg=0, corresponding to the gray vertical line
boundaries lie almost vertically in the experimensat T ~ atB=3w/4 in Fig. 4. . o
plane may make it difficult to test this prediction, sincean If the expansion is carried to tenth order, then it is clear

only be varied by preparation of multiple samples. Neverthefrom Eq.(13) thatG still vanishes on this same contour. The

less, this scenario seems to be supported by the numericglo-dimensional Hessian matrid . =d2G/du. du. then

simulations of Ref. 10. takes the form r a ’
It is important to note that a triclinic phase does not occur

anywhere in the phase diagram of the eighth-order model.

However, we do note the possibility of observing new mono- 0 d

clinic phases of types Mand M in a region nearg H=ld e (14)

=0.8x. In fact, the sixth-order modéVertical dotted line at

B= ) comes very close to yielding a monocliniccd\bhase

near the triple pointgray dot atae=tan 1(3), 8= ) where where indicesu= 1. and 2 correspond to the direc'Fions par-

the Mc, T, and O phases are in equilibrium. If a system suct@llel and perpendicular to thg, contour, respectivelyd

as BaTiQ or KNbO; could somehow be perturbed so that #0 as long ag,o# 0, in which case dé# <0. Thus, at tenth

the variation with temperature would carry the system on a&rder, the stationary poini, cannot be a minimum; instead,
trajectory passing to the left of this triple point in Fig. 4, thenit js generally an isolated saddle point.

a novel R-O—-M,—T-C (or even R-Mg—O—M,—T Finally, it is clear that the pointi, can be a local mini-

— C) transition sequence might be observed. However, t0 0Ur, 1 if the expansion is carried to twelfth order. Suppose
knowledge, no M or M¢ phase has ever been observed in a-

cubic perovskite system. a12=§12=0 and ag and a;, are positivei then,Gzaggf1
+aizg§ is obviously positive definite, and, is a true iso-
lated (global) minimum.
Concluding this section, we find that it is necessary to go
We have seen that the eighth-order expansion still doet surprisingly high order in the free-energy expansion in
not allow for the appearance of a triclinic equilibrium phaseorder to stabilize a ferroelectric state in which there are no
for any parameter values. It is natural, then, to ask at whasymmetry constraints on the order paraméteSpecifically,
higher order in the expansion a triclinic phase can first occurwe find that cubic invariants dfvelfth or higher order have
The answer is that the expansion must be carrietivedfth  to be included to stabilize such a triclinic phase. We con-
order before a triclinic phase can appear. clude that the discovergor synthesis of a material having
Suppose that a triclinic phase is the ground state; then, theuch behavior may be challenging, but is by no means im-
minimum of G occurs at a pointiy located in the interior of ~possible.
the irreducible wedge, as illustrated in FigdB Letting

D. Higher-order expansions

V. A MICROSCOPIC MODEL

G(U)=G(u)—G(Uy), When structural transitions have some order-disorder
character, a model free enerfg.g.,(2) or (6)] expressed as

o R R a function of a macroscopic order parameferq.,u or u)
04(u)=g4(u)—ga(ug), (12 provides little insight into the local structural fluctuations
that underlie the transitions. In such a case, a more appropri-
o . . ate microscopic picture of the high-symmetry phase may be
Os(U)=0gg(u)—ge(Up), one in which local regions have undergone a symmetry-
lowering structural distortion, but in such a way that long-
range order has not set in. For example, the description of the
phase transition sequence of BaFi@nd KNbQ, in terms of
T S the well-known “eight-site model® assumes the presence
G(u)=agy;+aio8496 @105+ 195+ ..., (13 of random local rhombohedral displacements in the ortho-

the expansion Eq4) can be rewritten as
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rhombic, tetragonal, and cubic phases. In the present casgte the discussion of the relevant phases and phase transi-
Noheda et al. have concluded from their own structural tions.

analysis of PZT."8and that of Corkeet al. of rhombohe- The present theory may provide some added insight into
dral PZT?" that there may be random locaionoclinicdis-  the phase behavior of conventional ferroelectrics such as
placements which order variously to yield the tetrahedralgaTi0,, but the principal new results concern cases in which
rhombohedral, or monoclinic phases near the morphotropighe eighth-order terms are important. In particular, the theory
phase boundary. One could then describe the system in terms,ides a natural explanation for the monoclinig, lhase

of fluctuations between minima of a “24-site model.” recently observed experimentally in PZT2 It also predicts
Cﬁ1|at if a triple point of equilibrium between T, R, and,M
phases occurs, then it will be one at which first-order R

and R-M, boundaries meet a second-order M, bound-

displacements of Nohedzt al. arise from an optical branch
of the phonon spectrum, and lgtbe the vector “local mode
amplitude” for that branch within théth unit cell® Take as

a model of the free energy ary. That is,P will rotate into the (1D) mirror plane con-
tinuously from the T side but discontinuously from the R
1 side.
Flul=2 f(u) + = 2" fin(u,Up). (15) Nohedaet al® have shown such a triple point in their Fig.
[ 2 1m 6, in agreement with our analysis. However, they also show

a region of coexistence of the T and,Nbhases in the same
phase diagram. In a homogeneous sample, such a coexist-
ence region can be due to hysteresis arising from nucleation
barriers to a first-order phase transition. The eighth-order

that, to a good approximation, its global minima establish thefheory predicts the TM, phase boundary to be of second

poEgibiedrrlagnitUQe ?n?horientatiou&tﬁf cljjl ' ff(u|) fa’? be order, in which case there can be no hysteresis or nucleation
subjected 1o precisely the same methods ot analysis as ay jers, |n principle, higher-order contributions to the free
plied toF(u) in Secs. II-1V, with parallel results. The* so

) . S . energy could be large enough to change the order of the
obtained can then be substituted ifitdn Eq. (1), yielding T— M, transition. However, a more likely explanation is that
1 the samples studied by Nohed#dal. may be inhomoge-
Fla]=F¢ + = E’ fim(U® ,Ul). (16) ~ heous. We note that these authprs did not report hysteresis,
2 but did report a two-phase coexistence region near the R—T
. . . boundary between 500 and 575K in Fig. 5 of Ref. 8. Attrib-
This can be regarded as a 24-site version ofctistate Potts uting this to inhomogeneity, we estimate that the concentra-

model. . -

- . . . tion variation may be of order 1% from the slope of the
A statistical analysis can be carried out for various formsR TIM=T phase boundarv in Fig. 6 of Ref. 8. Composition

of f,, (e.g., bilineay to capture the cubiécompletely disor- .~ """ ph u y In Fg. - ©. ~0mpostl
dered, tetragonal(partially disorderel thombohedralpar- inhomogeneity of that magmtude would be su_ff|C|ent to ac-
tially disorderedl, and monoclinic(fully ordered phases of COLIJ:?:]:I)Ir tht?]i-: v’\\//lgrlf hrz;\]ze Coﬁ)ef;gnggnigowl%g;z:t ;‘rl]gl:rr]e;

the case that” takes on all of the 24 symmetrically equiva- search fg’r even more nO\B/IeIZ\(I Mg, and tricﬁnic ferroelec

. . . . . = B, =
e s e phase. I 120 may b of iy n othr ks of cubi
sitior¥s and plastic crystaf2 systems with other kinds of vector order parameters, e.g.,

ferromagnetic systems.

The in-cell energy is presumed to be strongly nonlinear; the
inter-cell couplingf,,, may either be bilinear im, andu,, or
of higher order.f is also presumed to dominate tig, so

VI. SUMMARY AND CONCLUSIONS
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permitted by the sixth-order version of the theory. Moreover,

we have clarified the nature of the phases that may be ex-

pected to appear at higher orders in the expansion. In par- APPENDIX: DETAILS OF SIXTH-ORDER THEORY

ticular, we have shown that the extension of the theory to

eighth order allows one to describe, in addition, three kinds The purpose of this Appendix is to give further details
of monoclinic phase in whiclP is confined only to a sym- about the sequence of transitions that occurs in the sixth-
metry plane. To obtain a triclinic phase in whiBhis uncon-  order model of Sec. IV B. Recall that the behavior in this
strained by symmetry, we have shown that a twelfth-ordemodel is governed by a single dimensionless parameter
version of the theory is needed. A topological analysis of thedefined via Eq(10).

critical points of the energy surface has been used to facili- There are ten critical values of that we can define as
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a;=—0.3976r=—tan 1(3), In the T phase, the system exhibits the topology of Fig.
2(a) for a1 <a<as,; Fig. 2b) for a,<a<a,; and Fig. Zc)
a,=0.22567=tan *(6/7), for a,<a<as. At a,, point O converts to a local maximum
and simultaneously a saddle point appears along the M
a3=0.25m, symmetry line. There is an irrelevant crossing of the R and O
@,=0.3128r=tan }(3/2), maxima a-tag. At a4, R becomes a local minimum arjd the
saddle point switches from thegvto the M, symmetry line.
as=0.5, The transition from T to R is first order ats.
The system falls into an R ground state corresponding to
ag=0.60247=m—tan (3), Fig. 2(c) for as<a<ag; Fig. 2d) for ag<a<a-; and Fig.

2(e) for a;<a<ag. The M, saddle point disappears and T

— — —1
a7 =1.2256r=m+tan *(6/7), is converted to a maximum af;, and a new M saddle point

ag=1.25m, emerges with the conversion of O to a local minimunaat
The transition from R to O is first order afg.
ag=1.31287=7+tan 1(3/2), Finally, an O phase occurs, as illustrated in Figg) 2for
ag<a<ag and, as shown in Fig. (B, for ag<a<a;
a10=1.57. (A1)  +27. The saddle point at Mvanishes and R is converted to

The sequence of phases can be followed in Fig. 4 by tracin? local maximqm atvg. There is an irr.e.Ievant crossing of the
the vertical dotted lines; first from top to bottom @& 0 for and R maxima aiwy. The ftransition from O to T at
0<a<r, and then from bottom to top @= for 7<a 1.6024r is singular, in that the energy surface becomes ex-
<27r. actly flat along the entire Msymmetry line.
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