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Three recently introduced approaches to the theoretical treatment of ferroelectrics and
related materials in finite electric fields will be reviewed. First, the use of effective-
Hamiltonian treatments that have been fitted to first-principles calculations for describ-
ing applied electric fields and even field-induced structural phase transitions at finite
temperatures will be discussed. Second, a recently developed approach in which a sys-
tematic expansion of the free energy is truncated at a low order in the applied electric
field, allowing for a mapping of the energy landscape as a function of polarization and
of electric-field induced effects, will be reviewed. Third, a fundamental development of
a direct method for treating insulators in finite electric fields within density-functional
methods will be described. For each of these approaches, an example application is
given.
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The use of first-principles electronic-structure methods based on density-functional theory
for the study of ferroelectric materials has been very successful in recent years
[1–3]. Nevertheless, it has not been straightforward to treat the application of a homo-
geneous electric field to the material using these methods. The essential problem is that
such methods are based on the Bloch theorem, which requires that the electron potential
should be periodic under lattice translations, a condition that is not fulfilled in the presence
of an electric field. In view of the of the fact that the response to an electric field is one of
the first things one would like to know about a ferroelectric or piezoelectric material, this
has been an important limitation of the theory.

The problem has not been very severe, however, because of the early development
of methods for treating homogeneous electric fields in low order in perturbation theory
[4, 5]. Such methods allow for the calculation of such quantities as the dielectric tensor and
the dynamical effective charge tensor in the Bloch framework with a computational effort
that is comparable with that of the ground-state solution itself. Moreover, the successful
development of a first-principles theory of the electric polarization [6], which is conjugate to
the electric field, has also ameliorated these problems. For example, the dynamical effective
charge can be defined as the force that appears on an atom in linear response to an applied
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electric field, but it can equivalently and more easily be computed as the first order change
in polarization that occurs upon displacement of an atomic sublattice in the crystal.

Nevertheless, there are many situations in which one would like to be able to apply a
finite electric field to a crystalline insulator, and to compute the various properties of the
material directly in the presence of such a field. For example, certain ferroelectric materials
may undergo a structural phase transition at a critical value of an applied electric field, and
it would be virtually impossible to study such a situation using a perturbation expansion
about zero field.

In this manuscript, I briefly review three approaches that have been used successfully
in recent years to treat the existence of a finite, homogeneous electric field, starting from
the most approximate and proceeding to the most rigorous and fundamental.

Effective-Hamiltonian Methods

In the effective-Hamiltonian approach [7, 8], one defines a reduced number of degrees of
freedom per unit cell (typically, a ferroelectric mode vector and a displacement vector in
each unit cell), and constructs a model Hamiltonian, written as a function of these reduced
degrees of freedom, that reproduces the spectrum of low-energy excitations (ferroelectric
soft modes and strains) for the given material as obtained from the ab-initio DFT-LDA
calculations. One then arrives at a model, typically containing 10–20 parameters, that can
be subjected to Monte Carlo (MC) or molecular dynamics (MD) simulations in order to
determine the finite-temperature properties of the material. The coefficients of this model
are then determined from the ab-initio calculations.

Within this approach, it is straightforward to apply an electric field to the system at the
stage of doing the MD or MC simulations. The approximations involved are: (i) that the
force that appears on an atom is just linear in the applied field, for fixed atomic coordinates;
(ii) that the coefficient of linearity, the dynamical effective charge Z*, is independent of
distortion, and may be computed in the reference cubic structure; and (iii) that the higher
(hard) modes may be neglected and that the truncations of the Taylor expansion made when
constructing the effective Hamiltonian are justified.

We present here an example of the application of this method to PbZrTiO3 (PZT) with
x = 0.5 using an effective Hamiltonian that also contains terms to describe the B-site alloy
disorder of this system [9, 10]. Figure 1 shows the behavior of the polarization of this
system (ux , uy and uz are proportional to the polarization components Px , Py and Pz) as an
electric field is applied in the (111) direction. At zero field, PZT at x = 0.5 is a tetragonal
crystal; we take the tetragonal axis along z. As the electric field is applied, the polarization
tilts gradually at first from the (001) towards the (111) direction, as would be expected
from perturbation theory. However, at a critical electric field of approximately 108 V/m, we
find that the system undergoes a second-order phase transition in which the polarization
direction “snaps” to align with the (111) axis. The lower panel shows that this behavior
also generates sharp features in the piezoelectric response. In Ref. [10] we also consider
the opposite case in which x is chosen so that the system is rhombohedral in zero field, and
the electric field is applied along the (001) direction. Here the behavior is found to be more
complicated, traversing a series of structures of different symmetry, and allowing for a wide
region of electric field in which the piezoelectric response is enhanced.

Theory of Structural Response

Next, we consider a theory [11] which relaxes the various approximations involved in the
effective-Hamiltonian approach and instead deals directly with the ab-initio calculations. In
this approach, one still makes the approximation (i) above, namely, that that the force that
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FIGURE 1 (a) Cartesian components ux , ux and uz of the local-mode vector, and (b) d33

and d15 piezoelectric coefficients, as a function of the magnitude of the electric field applied
along the pseudo-cubic [111] direction in disordered single crystals of PZT at T = 50 K.
Insert illustrates the path followed by the polarization vector.
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FIGURE 2 Calculated polarization-vs.-electric-field hysterisis loop (upper panel) and
static susceptibility (lower panel) and static susceptibility of PbTiO3 under stress-free con-
dition (solid circles) and clamped-strain condition (open squares). Dashed line corresponds
to a non-accessible state (a saddle point in the thermodynamic potential).

appears on an atom is linear in the applied field, but this is the only approximation. One thus
treats the influence of the electric field on the electronic structure only to first order for fixed
ionic coordinates, but treats the resulting structural distortions to all orders in perturbation
[11]. This will be a good approximation in systems, like the perovskite ferroelectrics, that
are dominated by one or more soft modes and for which the electronic gap is not much
reduced by the structural distortions of interest.

Figure 2 shows the intrinsic hysteretic behavior of the polarization and susceptibility of
tetragonal PbTiO3 as a function of electric field applied along the tetragonal axis as calcu-
lated using this approach [11]. We identify the intrinsic coercive field (i.e., the one sufficient
to cause coherent volume reversal of the polarization without barrier) of 1.5 MV/cm and
3 MV/cm for free-stress and clamped-strain elastic boundary conditions, respectively. (Of
course, the true coercive field is determined by domain-wall pinning effects and will be
much smaller.) Here again, there is an interesting discrete physical behavior that occurs at
finite electric field that would be difficult to obtain via perturbative treatments around zero
field. The corresponding piezoelectric responses, and studies of field-induced structural
phase transitions similar to those of the previous Section, are also presented in Ref. [11].

Fundamental Theory of Insulators in Electric Fields

In recent work, Souza, Iniguez, and Vanderbilt [12], and independently and slight later,
Umari and Pasquarello [13], have demonstrated a new method for the direct calculation
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of the properties of a crystalline insulator in an electric field. In this approach, based on
earlier work of Nunes and Gonze [14], the electronic one-particle density matrix is required
to remain periodic and is expressed in terms of Bloch-like functions, despite the fact that
these do not remain eigenstates of the Hamiltonian in the presence of the applied field.
The formulation looks similar to the usual one, except that the energy functional contains
new additional terms in which neighboring k-points in the Brillouin zone are coupled to
each other in a way that does not take the conventional form of an expectation value of an
operator. Nevertheless, the energy functional may be minimized by standard techniques,
such as conjugate gradients, and quantities such as the Hellmann-Feynman forces may be
computed in the usual way once the solution has been found.

There are subtleties associated with this approach that are connected with the fact that
a crystalline insulator in a uniform electric field technically does not have a well-defined
ground state, since the electron potential is unbounded from below, and this difficulty can
give rise to an instability in the solution for the electron system. However, we have shown
that this instability is connected with the density of k-points in the reciprocal space mesh in
such a way that for any given mesh density, the solution remains stable up to a critical electric
field that scales inversely with mesh density. In most cases, this allows the interesting range
of electric fields to be covered by the calculations.

As an example, Table 1 shows the results of calculations of dielectric and piezoelectric
constants of two III–V semiconductors obtained by finite differences. That is, we increase the
electric field in small increments and compute the changes in the resulting forces, stresses,
and polarizations, with internal displacements and strain either clamped or unclamped as
appropriate. The Born effective charge is Z∗ = dF/dE (contrary to previous finite-difference
approaches, we compute it as the derivative of the force F with respect to the electric field E ,
not polarization with respect to displacement). The dielectric constant is εαβ = δαβ +χαβ,
where χαβ is the dielectric susceptibility and ε0 is the vacuum permittivity. If the ions are
kept fixed, this yields the electronic contribution ε∞; if both electrons and ions are allowed
to relax in response to the field, the static dielectric constant εstaticis obtained. The nonlinear
quadratic susceptibility is χ

(2)
αβγ = (2/ε0)d2 Pα/dEβdEγ , and we have computed it keeping

the ions fixed. In the zinc blende structure, the only nonzero independent components
of these tensors are Z∗

11, ε11, and χ
(2)
123. The “proper” piezoelectric coefficient γ14 can be

computed as the derivative of the stress component σ4 with respect to applied electric field
E1, allowing ionic positions to relax. It can be seen that reasonably good agreement is found
between theory and experiment; the discrepancy presumably results mainly from the errors
in the LDA approximation to the DFT theory.

Summary and Prospects

Several methods have been demonstrated here that may be used for calculating the properties
of insulating crystals, such as ferroelectrics and piezoelectrics, in the presence of a static

TABLE 1 Computed Dielectric and Piezoelectric Properties of Two
III–V Semiconductors Compared with Experimental Values

GaAs (theo.) GaAs (expt.) GaP (theo.) GaP (expt.)

Z*(e) 2.00 2.07 2.10 2.04
ε∞ 11.9 10.9 9.4 9.0
εstatic 13.5 13.2 11.2 11.1
χ (2) (pm/V) 134 166 66 74
γ14(e/a2) −0.40 −0.32 −0.25 −0.18
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homogeneous electric field. All of these are based on first-principles density-functional
methods, but the first two approaches involve additional approximations, while the last
one presented makes no approximations other than the usual ones of the local-density
approximation and discrete k-point sampling. These methods therefore show considerable
promise for allowing straightforward calculations of the properties of such systems in finite
electric field, allowing especially for the study of nonlinear effects and phase transitions
associated with a critical electric field that would be difficult or impossible to study via
conventional perturbative techniques.
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