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A theoretical investigation of disorder in undoped polyacetylene indicates that a substantial amount of topological
and structural disorder is consistent with the experimental work done to date: Certain topological defects (chain ends
and cross links) are found to be unstable to soliton emission, with the remarkable consequence that odd-membered
finite chains always contain a soliton. Relaxations of the stable defects are determined. Various kinds of structural
disorder are studied; these include admixtures of cis-isomerization, bending and twisting of chains, local interchain
interactions, and stochastic bond-length fluctuations. The effect upon the electronic density of states is calculated in
each case. When some chain bending is included, that a distribution of interchain interaction and a plausible amount
of bond-length disorder may explain the observed broadening of the Peierls edges.

1. INTRODUCTION

The spectacular increase in the conductivity of
polyacetylene upon doping! has drawn much atten-
tion to this material.? Partly as a consequence,
it is being realized that undoped (CH), is a fascinat-
ing model system in its own right. It is perhaps
the simplest system having a strong Peierls
distortion, and has been proposed to support do-
main wall (soliton) excitations between regions
of opposite bond alternation.®** Furthermore,
it has been suggested that charged solitons may
exist in the ground state of lightly doped (CH),.

Many questions about the undoped material re-
main controversial or unanswered. Optical ab-
sorption and photoconductivity measurements con-
sistently fail to show a sharp edge at the optical
absorption threshold characteristic of a 1D (one-
dimensional) density of states.®*® There is diffi-
culty obtaining a fit between theoretical calcula-
tions and the details of the experimental photo-
emission spectra.”® The explanation of these
discrepancies may depend upon gaining an under-
standing of the structure; the x-ray data in fact
suggest a distribution of interchain distances,®
but little else is known. What is the microscopic
fibril structure? What is the typical size of a
polymeric unit in the (CH), film? Is there signifi-
cant bending, twisting, splaying, and crosslinking
of polymer chains ?

While we cannot unambiguously answer such
questions, we have investigated theoretically the
consequences of various kinds of structural dis-
order in (CH),, and find that considerable disorder
is consistent with the experimental work done to
date. In Sec. II we discuss topological disorder,
including chain ends and crosslinks, and discuss
solitons and the question of soliton binding to these
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sites. In Sec. III we restrict ourselves to infinite
chains whose bond alternation remains intact, but
consider various kinds of structural disorder which
can nevertheless exist. These include regions of
cis-(CH)x, bending and twisting of chains, local
interactions between chains, and bond-length dis-
order. Finally, in Sec. IV we present a summary
and conclusions, with some speculation about the
experimental anomalies mentioned above.

II. TOPOLOGICAL DEFECTS

If it could by synthesized, crystalline trans-
(CH), would consist of infinite zig-zag chains
made up of CH units. The structure is shown in
Fig. 1 for a terminated chain, a defect which will
be discussed shortly. The system is planar, with
each carbon forming sp® hybrids in order to bond
with its neighbors. There are two filled bonding
orbitals per CH unit, and a half filled 7 band. The
theory of the Peierls transition predicts that the
system will undergo an asymmetric distortion in
order to double the periodicity and open a gap at
the Fermi energy,'® thus explaining (at least quali-
tatively) the alternation between long (weak) and
short (strong) bonds which is sketched in Fig. 1.

By symmetry, the p, orbitals decouple rigorously
from all other orbitals in the system and may be
treated independently. This is very useful because
it is the 7 orbitals which control much of the in-
teresting physics of the system, including the
optical gap and the possible existence of solitoens.
The interactions between the 7 orbitals are shown
schematically in Fig. 2(a) for the structure of
Fig.1. A defect of this kind will be designated
1F, because the last m bond connecting to the one-
fold site is a weak bond. (The radical R, which
may be H, CH,, etc., is assumed to have no states
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FIG. 1. Structure of a transpolyacetylene chain ter-
minating on a radical R.

of odd-z parity in the neighborhood of the Fermi
energy and is therefore ignored.) In Fig. 2(b) we
show a chain containing a soliton (S) and terminat-
ing on a strong bond (1F, defect); we will show
presently that the reaction

1F,~ 1F +S (1)

is exothermic. This spontaneous emission of a
soliton by the 1F, surface configuration has the
remarkable consequence that all odd-membered
chains must contain a soliton somewhere in their
interior.

We now turn to a consideration of the electronic
structure of such defects. Before presenting the
results of detailed calculations on these struc-
tures, we can learn a great deal about the nature
of the electronic states, particularly the existence
of midgap states, by some powerful general argu-
ments.

All topological defects (chain ends, crosslinks,
solitons) can be characterized by a bond -alterna-
tion parity (BAP) which is defined in the following
way. For each semi-infinite chain leaving the
defect, sever the chain on a weak bond; then
count the atoms remaining in the finite central
cluster. If this number is even (odd) the defect
has even (odd) BAP. Now if one takes an elemen-
tary one-electron Hamiltonian whose zero of
energy is at the center of the Peierls gap, it can
be shown (see Appendix A) that the density of
states is an even function of energy for all such
defects, and that as a consequence, all defects of
even (odd) BAP have an even (odd) number of
localized midgap states. Thus, for example,
the 1F, defect and the soliton both have odd BAP,
and consequently both have a defect state at mid-
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FIG. 2. (a) Schematic interaction diagram for 7 or-
bitals of a chain which terminates on a weak Tbond
(1F,, site). (b) Same for chain containing a soliton (S)
and terminating on a strong mbond (1F site). The cir-
cles represent p, orbitals, single lines represent weak
bonds (interaction »,), and double lines represent strong
bonds (interaction v ).

gap. The 1F, defect has even BAP and has no de-
fect states (only midband resonances). Note that

BAP is a conserved quantity in reactions such as

Eq. (1) above.

The existence of midgap states can be under-
stood intuitively in the limit |V |> |V,|. In this
case one can think of clusters (usually pairs) of
atoms connected by strong bonds as “molecules”
which then interact slightly with one another via .
weak bonds. In Fig. 2(a), for example, each
strongly bonded pair of sites gives rise to bonding
and anitbonding molecular orbitals at € =V ;
these are then broadened into bands whose width
is on the order of V,,. The last 7 orbital of the
chain has been left out, however, and gives rise
to a midgap state at € =0. In the case of Fig. 2(b),
the “triatomic molecule” at the soliton gives rise
to an € =0 midgap state, as well as states at €
=ist§. A glance at the planar crosslike defects
of Fig. 3 indicates that the 3F, 3F,, 3F,, .,
and 3F,,, defects will have 2, 1, 0, and 1 midgap
states, respectively, these being the number of
€ =0 eigenvalues of the corresponding central
molecule. (Of course the assumption [V [>|V,]|is
unphysical, but Appendix A makes it clear that
the existence of midgap states is symmetry related
and remains invariant as long as |V,[>|V,].)

It is straightforward to use Green’s function
techniques to solve for the electronic structure of
the defects shown in Figs. 2 and 3. However, this
is somewhat pointless because we have no guaran-
tee that any of these defects, in their present form,

(a) i ' (b)

S
e
s 3Fsew
(c) (d)
s
5\ .-
3stw ~ 3Fww

FIG. 3. Planar crosslink configurations (a) 3F o, (b)
3F¢gy» (c) 3F g, () 3F,,,. Note that the centers inter-
connect via the reactions 3F j— S+ 3F s, 3F g,,— S

+3F gy and 3F g+ S—F 00



22 EFFECTS OF DISORDER ON THE ELECTRONIC STRUCTURE... 3941

will be stable in the material. Firstly, we expect
distortions (relaxations) of the system in the neigh-
borhood of the defects; for example, it is well
known from previous theoretical work that the
soliton will not remain confined to a pair of strong
bonds, as shown in Fig. 2(b), but will spread out
over many more sites, creating a region in which
the degree of bond alternation is reduced.* Second-
ly, and more drastically, we will show that
several of these defects are unstable against the
emission of a soliton down one of the chains. Thus
our immediate task is to develop a means by

which to calculate total energies of various defect
configurations, and thereby find stable defects

(and their energies) by seraching for total energy
minima in configuration space.

Following Su, Schrieffer, and Heeger,* we as-
sociate to each site n a coordinate u, for the dis-
placement of the nth CH unit parallel to the chain:
the Hamiltonian is then written

3c=—z v'”'l.nc:ﬂ,sc,..s'*'ﬂ.c.
n,s
* Z 2K (s = %,)° —Z Tty — )
" n

+E M. 2)

Here v,,,,, is the transfer integral, C, , the an-
nihilation operator for spin s on site #, K the bond-
stretch spring constant, and M the CH mass. The
Hamiltonian is identical to that of Su, Schrieffer,
and Heeger except that the third term has been
added to stabilize the chain against contraction
due to 7 bonding. This term has no effect as long
as attention is restricted to trial solutions of the
infinite chain which do not vary the lattice param-
eter, but it is important at defect sites because
local contractions can and do occur.

In linear order

vn+1.n=vo_a(un+1—un) (3)

so that the static Hamiltonian becomes

JE = _Z [(1 +"n)CI+1,s c,,,s +H.c.]
s

+3Y KR+ v, (4)

where the renormalizations # =H/v,, %, =(Vpsy,n
- ,)/vy, kK=Kv,/a?, v=T/a have been applied to
obtain a dimensionless Hamiltonian. For the un-
dimerized chain one has x,=x=constant and the
energy per CH unit is

E==4/m)(1+x) +ic2 +yx, ‘ (5)

so that to stabilize the chain we choose y =4/7.
The dimerized chain has x,=(~1)"x and

E=-f(x) +3kx?, (6)

where f is obtained by integrating numerically
over the density of states. It has the form?!!

f(x) -2 [2 ln<%> - 1] +0(xY). )

T
Taking 9E/ax =0 for stability determines
k=f"(%)/x. (8)

Notice that the couplings k and y of Eq. (4) are
determined solely by the dimerization parameter
x. Thus, within the model, x alone determines
the length of solitons (in units of the lattice con-
stant), the relaxations which occur at defects,
the relative total energies of various relaxed
defects, etc. For completeness we derive esti-
mates for the real spring constant K and coupling
a in Appendix B, obtaining results somewhat dif-
ferent from those reported previously. However,
this need not concern us at the moment.

We have chosen a 7 bandwidth of 12 eV (v,=3
eV) and Peierls gap of 1.4 eV, which leads to x
=0.117 and k =3.255. For each defect configura-
tion, Green’s-function techniques are used to
determine the local density of states N,(€) at each
site n. The formalism used is straightforward
specialization of the cluster Bethe-lattice method!*:*
to the case of twofold coordination.? The contribu-
tion of each site to the defect creation energy is,
from Eq. (4),

€ e
5En=f FeN,,(e)de +§E (kB +yx,) —Ey, (9)

where the sum is over sites which are nearest
neighbors to #, and E, is the total energy per site
of the uniformly dimerized chain. The sum

>in 617:,, converges rapidly and serves to uniquely
define the defect total energy. Note that the Hamil-
tonian of Eq. (4) does not include the changes in ¢
bonding as one goes to onefold or threefold de-
fects. Therefore, it will only give total energies
which are valid for comparing defects of the same
coordination. For each defect configuration, the
electronic part of Eq. (4) is solved using Green’s-
function techniques and the lattice energies are
simply summed. As a test case we have calcula-
ted the ground-state soliton with trial function #,
=(vox/2a)w, given by

w,=(-1)"tanh(n/1) (10a)

to have length [=9 and E =y,E =0.442 eV, in agree-
ment with Su, Schrieffer, and Heeger.?*

It now becomes necessary to choose trial func-
tions for the atomic positions in the neighborhood
of defects. One wants a trial solution which (i)
heals to the normal chain with dimerization x far
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from the defect site, (ii) allows for regions of de-
creased (or increased) dimerization near defects,
and (iii) allows the defect site to relax in toward
(or out away from) any chain connected to it. We
choose

w, +tanh(n/1) ) , (10b)

wy=(-1 (Jasamial,

where the labeling »=0,1,2,... proceeds from
the defect site down the chain. The position of the
defect site w, and decay length [ are the two free
parameters. Several examples are shown in Fig.
4 [For |u,|<1 these are truncated solitons since
Eq. (10) can be rewritten as w, = (1) tanh(n/1
+tanh™*w,).] We have experimented with other
trial solutions, but the essential features are ob-
tained with Eq. (10).

In Figs. 5 and 6 we show the calculated total
energies of the 1F, and 1F,, defects as a function
of w, and I. The 1F defect has an energy mini-
mum at /=5 and w, =1.75 with E =0.808 eV. The
result w,> 1 indicates that the final site relaxes
in towards the rest of the chain compared to the
uniformly dimerized case, and there is a region
of increased bond alternation near the defect. The
1F,, defect, however, shows a rémarkable be-
havior: no stable configuration exists, but the
system wants to relax towards w,=-1. As can be
seen from Fig. 4, this corresponds to the emis-
sion of a soliton, leaving behind an unrelaxed
1F defect. Furthermore, by counting bonds it
becomes clear that any finite chain with an odd
number of CH units must contain either a 1F,
chain end or a soliton; we have shown that the
latter is energetically favorable, and thus all
odd chains must contain a soliton.

For the three-fold defects of Fig. 3 we used
trial solutions with a common [ for all three

FIG. 4. Trial solutions for the order parameter
(=)"w, as a function of #, following Eq. (10). In all cases
1=2; three choices of wy are shown.
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FIG. 5. Total energy in eV of 1F  defect as a function
of wg and 7. The + marks the energy minimum.

chains and different w, for different kinds of out-
going chains. We found that the decays 3F

- 3F g, +S and 3F,,—~ 3F,,,.+S are exothermic,
and that the only stable defects are 3F,,, (I=4,

wy =uf=1.3, u§=0.35, E=-0.743 eV) and 3F,,,
(1=8, wy=w3=wi=0.5, E=-0.447 eV). As in the
case of the one-fold defects, the configuration with
no midgap state is, not surprisingly, lowest in
energy. However, note that E(3F,,,) — E(3F )

< E(soliton) so that the 3F,,,, is stable and will not
decay into 3F, by soliton emission. This con-

Sww

trasts with the situation for one fold defects, where

" we found that only the 1F, defect was stable. Since

the 3F,,,,, defect has a midgap state, we have the
remarkable result that there is a stable three fold
defect which is either paramagnetic (if half occu-
pied) or charged (if fully occupied or empty). In

the latter case, it is possible that such a defect

FIG. 6. Total energy in eV of 1F, defect as a function
of wg and 1. .
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FIG. 7. Calculated densities of states near stable de-
fects (solid curves) and bulk densities of states (dashed
curves) for comparison. (a) 1F defect, (b) %stw defect,
() 3F ,,,, defect.

would show up as a broad ir-active feature at pho-
non frequencies. Of course, if free solitons are
available, the reaction 3F,, +S—3F,  will purge
such defects from the material.

In summary, the stable bond-coordination defects
identified to date are the 1F,, 3F,,,, and 3F
defects. Figure T shows the local density of
states averaged over a cluster of sites near the
defect for each of these three species. Figure
7(a) shows that the 1F, defect causes a consider-
able shift of weight from the sharp 1D Peierls
edges deeper into the bands. This is suggestive in
terms of the experimentally observed absence of
a sharp optical edge, but the effect has been ex-
aggerated in Fig. 7(a) by averaging the local den-
sity of states.over a small cluster (four atoms)
and consequently a very high density of broken
chains would be needed to explain the experimental
result. Notice in Fig. 7(b) that the 3F,,, defect
gives rise to shallow trap states 0.06 eV from the
Peierls edges, but no deep gap states. Finally for .
the 3F,,, defect, the formation of the midgap state
subtracts a great deal of weight from the Peierls
edges [the effect is underestimated by Fig. 7(c)
due to averaging the density of states over a small
_ cluster], but any reasonable density of such de-
fects in the pristine material should give rise to
noticeable midgap optical absorption (which has
not been reported to date). Similar conclusions
about the relative stability of the 1F, and 1F, have
recently been discussed by Su.'®

A variety of other topological defects could occur,
such as nonplanar crosslinks or benzene-ring
chain terminations, but the list of such possibil-
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ities is too extensive to pursue here. We prefer
to turn our attention at this point to a class of
nontopological defects in which we consider only
infinite chains with no reversals of bond alterna-
tion. There remains considerable variety to be
explored in this realm.

III. STRUCTURAL DISORDER

Even if every polymeric unit in the polyacetylene
film were infinite and contained no solitons, there
could still be various kinds of disorder present,
including regions of cis-(CH),, bending and twist-
ing of chains, local interactions between touching
chains, and variations in amplitude of bond al-
ternation. Thisdisorder could affect the density of
states at the Peierls edges or deeper in the valence
bands, with consequences for the interpretation of
optical and photoemission experiments. We shall
consider each of these forms of structural dis-
order in turn.

In order to do so, we have developed a tight-
binding model by fitting to a first-principles cal-
culation on {rans-(CH),. The calculation of
Karpfen and Petkov® was chosen for fitting be-
cause its bandwidths appear to agree with photo-
emission better than other calculations avail-
able.”"'* The resulting tight-binding Hamiltonian
is detailed in Table I. Briefly, the basis consists
of three sp® hybrids, the p, and the H orbitals in
each CH unit. Interactions between all hybrids
on nearest neighbors are included.

Figure 8 shows the resulting density of states
for trans, cis-transoid, and ¢{»ans-cisoid poly-
acetylene. The p, orbitals continue to decouple
rigorously, so that the region of the Peierls gap
is unaffected (assuming the degree of bond alter-
nation is unchanged). However, there are clearly
considerable changes deeper in the ¢ valence
bands. If many chains in the film retain regions
of cis-isomerization, the resulting density of
states would resemble a weighted average of Figs.
8(a)-8(c). However, it was found that such aver-
aging would not materially improve the fit to photo-
emission by the trans-isomer alone.

In Fig. 9 we show what is meant by the terms
bend and twist. Both kinds of disorder involve di-
hedral angle variations only; the sense of the di-
hedral angle is constant for twist and alternates
for bend. (“Splay,” or co-planar bending, in-
volves bond angle rather than dihedral angle vari-
ations and was therefore dismissed as a less
likely possibility.) We have calculated the density
of states for structural models with constant bend
or twist. These give rise to the circular or helical
patterns of Fig. 9 and have the property of being
periodic in interaction space. Therefore the
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TABLE 1. Tight-binding Hamiltonian for (CH),. Insert
shows basis orbitals: ay,aj,as are carbon spz hybrids,
ay (not shown) is p,, ag is a hydrogen s orbital. Hj gives
the form of the on-site part of the Hamiltonian, V gives
the nearest-neighbor coupling. 6 is the dihedral angle.
Parameters are given in the bottom panel.
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On site Strong bond Weak bond
€=0.65 eV V5=18.87 eV 15.91 eV
Ey=8.30 eV Vy=4.45eV 3.75 eV
Ven =15.65 eV Vy=3.26 eV 2.74 eV

simplest approach is just to calculate the 1D band
structure as a function of the “wace vector” ¢
which specifies the relative phase of the wave func-
tion on neighboring C,H, units. The results are
shown in Figs. 10(a) and 10(b). While in principle
the bonding and antibonding hybrids could interact
strongly with the p, orbitals, this does not occur
for twist at ¢ =0 or for bend at ¢ =7, because the
interactions along the strong and weak bonds are
out of phase and almost cancel. For bend the in-
teraction near ¢ =0 is strong and opens a gap near
—8 eV where the 7 band previously crossed a
bonding band. For twist near ¢ =7 manifests itself
weakly as an asymmetry in the Peierls edges be-

T T 1 |

(@) AA
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DENSITY OF STATES (ARB. UNITS)

! 1

-30 -20 -10 (o}
ENERGY (eV)

FIG. 8. Tight-binding densities of states for crystalline
isomers of polyacetylene. (a) Trans-(CH),, (b) cis-
transoid (CH),, (c) trans-cisoid (CH),. Insets show the
geometries of each isomer.

cause there are no bonding or antibonding states
in that region of the spectrum.

It is quite easy to imagine virtually every chain
in the material having some modest amount of
bend. We have calculated the density of states for

(a) TWIST

A=

(b) BEND

FIG. 9. Structures resulting from dihedral angle vari-
ations may be constructed by folding a strip of paper.
Each vertex represents a carbon atom and each heavy
line represents a carbon-atom nearest-neighbor C-C
bond. A flat strip of paper corresponds to undimerized
trans-(CH),.” (a) A strongly twisted chain formed by uni-
form dihedral angle variations of 45°. (b) A strongly
bent chain formed by alternating dihedral angle devia-
tions of +45°.
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(a)

(b)

DENSITY OF STATES (ARB. UNITS)

-30 -20 -10 [o]
ENERGY (eV)

FIG, 10. (a) Tight-binding densities of states for
trans-(CH), with constant twist of 15°. (b) Same for
bend of 15°. (c) Light solid line: tight-binding p-state
projection of density of states for ¢vans-(CH), without
twist or bend broadened by a 1-eV-wide Gaussian. Dot-
ted line: same for rms bend of 10°. Heavy solid line:
experimental photoemission of Ref. 7.

different dihedral angles (in 5° increments).
Figure 10(c) shows the result of superposing these
densities of states according to a Gaussian weigh-
ted average with an rms dihedral angle of 10°,
Also shown are the density of states without bend
and the experimental photoemission of Duke et al.”
Inclusion of some bend allows a modest improve-
ment in the fit to experiment.

In a search for interactions which might show a
strong influence on the Peierls region of the spec-
trum, we have considered the case of local inter-
chain interactions and of bond-strength disorder.
The interaction configuration and the resulting
density of states for one model of local interchain
interactions between crossing chains is shown in
Fig. 11, with an exaggerated value of 1.5 eV for
the interchain interaction w. The p, orbitals once
again decouple. Because of the presence of odd-
fold rings in interaction space, the conclusions of
Appendix A are no longer valid, and the density
of states is not constrained to be even in energy.
We find that an electron trap state has been pulled

DOS

-8 4 8

ENERGY (eV)

FIG. 11. Density of states in the vicinity of a localized
interaction between a pair of crossing (CH), chains. In-
sert gives a schematic interaction diagram; single lines
denote v,, double lines denote v, and dotted line denotes
w.

out of the conduction band. A 90° rotation of both
chains about their axes induces a similar effect at
the valence-band edge. Thus a distribution of inter-
chain interaction along a pair of chains would be
expected to induce a slight broadening of the band
edges, suppressing the one-dimensional E™'/2
singularities at each edge. Such an effect has

been described by Grant and Batra'* who have
performed calculations on an idealized three-di-
mensional model of cis-(CH),. Since there is
arguably a distribution of interchain separations

in these quasicrystalline samples, this broaden-
ing is probably more appropriately described as
the band tails of an otherwise unperturbed 1D spec-
trum than the VE3D threshold obtained in Ref. 14.
The former interpretation requires that the inter-
chain conductivity occur via hopping between
localized tail states.

Finally, we consider the possibility that bond
lengths vary randomly away from uniform bond
alternation. Bond-length disorder should be con-
sidered less probable than stochastic variations
in bond angles or interchain separations. However,
anticipating that local variations in the packing
density of contiguous chains may introduce signifi-
cant fluctuations in the total crystal potential ex-
perienced by the valence electrons, we will con-
sider bond~lerfgth fluctuations as well. According
to our estimate (see Appendix B) the bond-length
change responsible for the gap in crystalline
(CH), is only +2.7%, so it is quite easy to imagine
that static bond-length disorder of only 1-2%
could begin to wash out the gap.

We have tested this idea by constructing a
chain segment of 5200 CH units with site positions
given by x,(-1)"(1+s,)x, where s, is chosen inde-
pendently according to a Gaussian distribution with
0=0.5 and zero mean. (For o =0 this would be the
perfectly dimerized chain.) Then the bond lengths
also follow a Gaussian distribution, with o’
=(0/v2) 2.7% or 1% of the bond length. We then
connected uniformly dimerized chains to either
end of this segment, and averaged the calculated
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local density of states over the central 5000 atoms
of the segment. Since this is a one-dimensional
model, all statés are Anderson localized, so that
the total density of states is really a sum of 6
functions corresponding to each localized state.
Therefore, to obtain a smooth average it is nec-
essary to study a segment which is long enough to
have many d functions in every energy interval.
Even with 5000 atoms per segment, it was neces-
sary to average the results over four such seg-
ments.

The results are shown in Fig, 12, With only a
1% rms bond-length change on each C-C bond,
we find a very substantial broadening of the 1D
band edges. (Even with @ =4.1 eV/A following
Su et al.,* a rms deviation gives the same result.)
This effect is perhaps better expressed following
the arguments presented in Refs. 10 and 15 which
treat the electronic spectrum near the Peierls
gap in one-dimensional systems in which the lat-
tice distortion becomes uncorrelated over a
length £. Although in these treatments ¢ is en-
visioned as resulting from thermal disorder, we
readily generalize £ to include static disorder.
One obtains a lifetime broadening, T, of a “Bloch”
state

T =hvgt™, (11)

where v is the Fermi velocity in the metallic

(undistorted) state. T has the effect of “smearing™

the electronic spectrum replacing the Peierls gap
with a “pseudogap.” We estimate 7v, =8 eV A in
(c H)x ; consequently a mean coherence length of
40 A on each chain would be required to explain
the observed broadening of the absorption edge,
which is not an unreasonably short estimate.

We believe the results described in Figs. 11
and 12 to be the most likely explanation for the
absence of a sharp edge in the experiments. Be-
cause there is no k-selection rule for a system of
localized tail states, this would also explain the
observed momentum independence of the absorp-
tion edge.'®* Because we have only carried out 1D
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FIG. 12. Solid curve: average density of states near
the valence-band edge for a (CH), chain with stochastic
variations of 1% rms in bond lengths. Dashed curve:
crystalline (CH), for comparison.

calculations, we have no way of estimating the
position of the mobility edge. However, the fact
that the disorder in (CH), need only be compar-
able to the bond alternation (which is already
small), together with the quasi-1D nature of the
system, suggests that this material may be a
model system for severe Anderson localization,
with an unusually large tail of localized states.
Finally, we point out that the degree of broaden-
ing of the Peierls edges may be highly sample
dependent since the amount of disorder is likely
to depend upon preparation conditions. We should
note that while the present results suggest mech-
anisms which broaden the absorption edge, a
complete description of the optical spectrum be-
low 2 eV should include a treatment of the exci-
tonic final state.” In particular, photoconductivity
measurements® may be taken as evidence that
optical absorption is excitonic within ~1 eV of
threshold.

IV. SUMMARY AND CONCLUSIONS

We have studied many different kinds of disorder
which can occur in polyacetylene films. The re-
sults indicate that moderate structural disorder,
including twisting, bending, or local touching of
chains, could be virtually universal without having
a major impact on the electronic properties of the
film. There appears to be a minor improvement
in the fit to photoemission when some bend is in-
cluded. Admixtures of cis-isomerized (CH),
chains at levels approaching 10% cannot be ruled
out by photoemission. Note that Raman!®!® gcat-
tering has been shown to be a more sensitive
probe of the cis-tvans ratio on (CH),.

By studying the stability of various possible
topological defects to-soliton emission and relaxa-
tion, we have identified one stable chain termina-
tion and two species of stale planar crosslinks.
One of the latter has a midgap state, which is not
seen in the ir absorption. The other two defects
could occur at large densities (on the order of
a percent) without having any dramatic effect on
the density of states.

Finally, since the bond alternation is already
weak, stochastic variations of only 1% in bond
length can strongly broaden the 1D Peierls edges.
This effect and interactions between randomly
packed chains are thought to be the most likely
explanations for the observed absence of a sharp
edge in some samples.
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APPENDIX A

In this appendix we show that the bond-alterna-
tion parity (BAP) as defined in the text specifies
whether the system may contain an even or odd
number of midgap defect levels. Many of the con-
clusions we reach are intuitively obvious for
specific manageable cases, and we proceed with
this analysis to emphasize the generality of these
results.

We begin by considering the symmetry of mid-
gap solutions to the one-electron Hamiltonian:

5= t,C1C,s, +H.C. : (A1)

where t,=t,(,) for odd (even) n. An interaction
diagram describing H is given in Fig. 13. Notice
that for any eigenfunction of H, ¢,, with eigen-
value A, we may construct an eigenfunction Q¢,
with eigenvalue —\ where

Q=Y (-1clc,. (A2)

At midgap A~ 0 and hence ¢, is an eigenfunction
of @. Inspecting @, we see that ¢, must possess
nodes on every other site. There are two such
functions one may obtain which are labeled (a)
and (b) in Fig. 13. For |¢,| < [t,| the solution (a)
[(b)] increases (decreases) as » increases. Sub-
jeét to the boundary condition that the charge den-
sity of such a state in the crystalline dimerized
chain possess the translational symmetry of the
crystal, we recognize that neither (a) nor (b) are
allowed solutions in the crystal, i.e., there are
no midgap states in the defect-free chain.

Now consider breaking this chain across a bond.
We consider, in turn, breaking the bond a8 and
the bond By shown in Fig. 13. We formally break
the bond by continuously reducing the interaction
integral along the bond in question to zero. The
lower symmetry of the weakened chain permits

FIG. 13. Dimerized chain with nearest-neighbor inter-
actions ¢, and ¢;. Two possible eigenstates of @ are
sketched, and described in Appendix A.

midgap solutions which decay to zero at +. We
see that the allowed solution for the chain broken
along ap would have zevo amplitude on sites o and
B while the solution for the broken a8 bond may
have nonzero amplitude on the terminal sites. In
either case the condition Hg, =0 requires that the
defect state has zero amplitude on the next-to-
terminal sites. We immediately conclude that the
midgap solution for 8,4 is the null solution (¢,
=0), whereas the perturbation 0¢,, will produce
nonzero solutions which we recognize as surface
states on the two severed chains with dangling
strong bonds. Thus, breaking a chain along a
weak bond will not alter the number of midgap
defect levels in the system of interest.

Finally, consider any finite structure to which
is attached a set of nonconnected infinite dimerized
chains of the type we have considered. We break
the appended chains along weak bonds and further
require that the finite structure contain no closed
odd interaction rings, a requirement which is
satisfied by the defects discussed in the text. For
such a system it is easy to show that one may
always construct a diagonal matrix @, similar to
(A2), which has the property

Q'@ = -ie. (A3)

Hence the density of states is even (for every
state at A there exists a state at —2). If the num-
ber of sites in the cluster is odd, there must
consequently exist an odd number of midgap defect
levels in the cluster.

APPENDIX B

In Sec. II, the analysis of Egs. (2)—(8) was
carried out primarily in dimensionless units.
Here, we derive estimates for the real spring
constant K and electron-phonon coupling o, and
compare our results with those of previous authors.

We begin with the experimentally observed’
Raman-active mode at 1470 cm™ which corres-
ponds to a zone-center optical phonon in which CH
units move primarily parallel to the chain axis,
with neighboring CH units 180° out of phase.'® To
simplify the analysis we consider the undimerized
geometry, and find the screened spring constant
K, is given by Kp=(3)Mw?=25.9 eV A2 for M =13
amu. This is related to the unscreened spring
constant K of Eq. (2) by

KT=K+Kscr=(a2/vo)[K —f”(x)]; (Bl)

where K. corresponds to the electronic screening
from the first term in the Hamiltonian of Eq. (2).
For x=0.117 we find & =f"(x)/x=3.255 and f'(x) =
2.028, sothat a2/v,=21.1eVA2andK = 68.6 e VA2,
This differs from the estimates of Su, Schrieffer,
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and Heeger, who give o?/v,=6.8 eV A™2 and K/2
=10.5 eVA™.*

Taking v,=3.0 eV, we find o =8.0 eVA™, in
agreement with Mele and Rice®® who give o =6.9
eV A™L, Then from Eq. (3) we obtain 0.022 A for
the horizontal displacement of the CH units, and

0.038 A for the bond-length change. Su et ql.* give
@ =4.1eV A™! and a bond-length change of 0.073 A.
We believe our smaller estimate of the bond-
length alternation to be in better agreement with
bond-length estimates from other work.2°
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