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Theory of polarization of crystalline solids
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We consider the change in polarization AP which occurs upon making an adiabatic change in the
Kohn-Sham Hamiltonian of the solid. A simple expression for AP is derived in terms of the valence-
band wave functions of the initial and final Hamiltonians. We show that physically AP can be interpret-
ed as a displacement of the center of charge of the Wannier functions. The formulation is successfully
applied to compute the piezoelectric tensor of GaAs in a first-principles pseudopotential calculation.

Experimentally changes in the electrical polarization of
solids can be induced by various means including applica-
tion of a strain (piezoelectricity) or changes in tempera-
ture (pyroelectricity). Ferroelectrics are a technologically
important class of materials whose polarization can be
switched by application of an electric field.! To date
there have been relatively few theoretical attempts to cal-
culate these quantities from a quantum-mechanical start-
ing point. In this paper we derive simple formulas for
calculating finite changes in the polarization of a crystal-
line solid. The method is ideally suited to first-principles
density-functional investigations of polarization effects.

We begin by considering the change in the electronic
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polarization per unit volume of a crystal which is induced
upon making an adiabatic change in the self-consistent
Kohn-Sham potential. We parametrize the change in the
potential with a variable A which is arranged to have
values O and 1 at initial and final values of the potential,
respectively. In the following we shall specialize to the
case where the change in potential preserves the transla-
tional symmetry of the solid. The formalism developed
below will therefore be applicable for computing AP with
macroscopic electric field E held to be zero. If the ma-
terial is an insulator for all values of A in the range 0-1
then we have
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where o is a Cartesian direction, m, and g, are the elec-
tron mass and charge, N is the number of unit cells in the
crystal,  is the volume of a unit cell, f is the occupation
number of states in the valence band (in spin-degenerate
systems f =2), M is the number of occupied bands, p is
the momentum operator, and V' is the Kohn-Sham po-
tential. A heuristic derivation of Eq. (1) has recently
been given by Resta.’? Resta proposes that we compute
the total change in polarization per unit volume, AP, us-
ing

aP= [ (3P /3M)dA . 2)

Physically, AP arises from the flow of polarization
currents in the solid and Eq. (1) may also be regarded as
the adiabatic limit of a Kubo formula for the current.? It
is somewhat surprising that the change in polarization
can be computed without explicitly stating how the crys-
tal is terminated. The fundamental justification for tak-
ing the thermodynamic limit in Eq. (1) rests with the fact
that the current response of an insulator depends only on

the local environment.*? |
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The expression for P /3A can be recast in a form in
which conduction-band states do not explicitly appear us-
ing an argument developed by Thouless et al.® in their
analysis of the quantum Hall effect. We introduce a set
of cell-periodic functions, u{»), with a choice of phases
such that u{®) are analytic in both k and A. The matrix

elements in Eq. (1) can be rewritten as
m
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and
WRlavid/arlyd) = wiila/on, A Plluil)
(3b)
where the A {* is the cell-periodic Hamiltonian

AP =(172m,)( —ihV+#K)2+VE(r) . (3¢)

Substituting Eqgs. (3a) and (3b) into Eq. (1) it is straight-
forward to show by analogy with Ref. 6 that

M
AP,=—(ifq,/87°) 3 fBdefoldx[<au{g,’/akalau§3,’/ax)—(au;ﬁ’/axlau&vaka)] , @)
n=1

where the integral over k extends over any primitive cell
in reciprocal space. The one-dimensional (1D) analogue
of Eq. (4) has been derived previously by Thouless’ in a
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f
slightly different context for the case of noninteracting

electrons where the formal similarities with the quantum
Hall effect are particularly striking. For example, in a
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1D system with period a, Stokes’s theorem allows us to
write the change in polarization per unit length as

fq. M

AP=— .
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where 7 is a two-component vector with elements (A, k)
and the contour of integration C is around the loop
in 1 space from (0,7/a)—(1l,7/a)—(1,—m/a)
—(0, —7/a)—(0,7/a). The quantity in curly brackets
can be recognized as the change in Berry phase for ficti-
tious adiabatic evolution of the cell-periodic wave func-
tion around the loop C.%° Thouless has observed that the
contour integral in Eq. (5) is quantized in the special case
where the potential is the same at A=1 and 0. In these
circumstances the quantity in curly brackets measures
the change in the phase of the wave function at any given
real-space point as (A,k) is taken around C. Given that
J
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With our choice of gauge, {u{})|3/dA|u{})) is periodic in
k. The gradient of this quantity mtegrated over the Bril-
louin zone (BZ) is therefore zero, so the second term in
Eq. (7) makes no contribution. In the periodic gauge we
therefore arrive at the conclusion that

AP=P"—P, (8a)

where

P = lfqe/Sﬂ)z f dkCu 18 /0k g lull) .

n=1

(8b)

The integral on the right-hand side of Eq. (8b) is close-
ly related to the Berry phase of band n, a quantity which
has been recently introduced by Zak and co-workers.!®
The form of Eq. (8) is particularly simple when written in
terms of the Wannier functions W*(r) of the occupied
bands.!® The Wannier functions depend on the particular
choice of phases used in the periodic gauge. We define
the Wannier function using

WP (r—R)=(VN Q/87) [ dke™® " Ryt)r)
BZ
(9a)
which implies that

UG (D=(1/VN) 3 e *e"Rphr—R),
R

(9b)

where the sum over R runs over all real-space lattice vec-

tors. Substituting Eq. (9b) into (8b) we find the simple re-

sult that
P(l

(fa /) 3, JrlwiMr)|2dr (10)

n=1

Physically, Egs. (8a) and (10) state that the change in po-
larization of the solid is proportional to the displacement
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the cell-periodic parts of the wave function can be chosen
to be analytic in k and A this change in phase must be an
integer multiple of 27. We therefore conclude that the
polarization per unit length of a 1D system can only
change by an integer multiple of fe for adiabatic changes
in the Hamiltonian for which V{9 =V{. An analogous
result for 3D systems will be derived below.

The physical content of Eq. (4) can be made more
readily apparent by working in a gauge where the wave

functlons are periodic in reciprocal space, i.e.,
Y () =9} g ,(r) for all reciprocal lattice vectors G.

In terms of the cell-periodic functions in such a gauge we
have

ul(n)=e ST (1) . (6)

We remark that the gauge condition of Eq. (6) does not

uniquely define the phase of the wave functions. In-
tegrating Eq. (4) by parts we find that
<uk,3|a/axlu;},,’> )

of the center of charge of the Wannier functions induced
by the adiabatic change in the Hamiltonian.

Returning to the case where the Hamiltonians at A=0
and 1 are identical, #{2)(r) and u{})(r) can at most differ
by a phase factor so that
lo""u(ko,,)(r) .

udr)=e (11)

In this limit Eq. (8) reduces to

M
AP,=—(fq,/87") 3 fBdeaek,,/aka (12)
n=1

With our periodic choice of gauge ew“" must be periodic

in k. The most general form for the phase angle under

these circumstances is 6y, =B, +k-R,, where B, is

periodic in k. We thus conclude that
M

AP=(fq,/Q) 3 R, (13)

n=1

The change in polarization per unit volume for paths
where the Hamiltonian returns to itself is therefore quan-
tized in units of (fg, /Q)R. A particularly simple case to
consider is the magnitude of AP for paths of the form

Q(r)=V (r—AR), which physically corresponds to a
translation of the crystal. In this case it is straightfor-
ward to verify by explicit calculation that Eq. (8) yields
AP=(fq,/Q)MR, as one would expect on physical
grounds.

We have in Egs. (8) and (13) the rather remarkable re-
sult that AP for a crystal can in principle be determined,
to within a factor of (fe /Q)R, from a knowledge of the
valence-band Kohn-Sham wave functions at A=0 and 1.
In practice the arbitrary factor of (fe /Q2)R can often be
eliminated by inspection because one is usually interested
in polarization changes where |AP| << |(fe /Q)R,| where
R, is the shortest nonzero real-space lattice vector. In
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other cases any uncertainties introduced by this factor
can always be removed by dividing the change in the
Hamiltonian into a number of subintervals.

Direct evaluation of AP via Eq. (8) is cumbersome in
numerical calculations, because in practice we only com-
pute the wave functions at a finite number of points in the
Brillouin zone, and in general there will be no particular
phase relationship between the eigenvectors generated by
the diagonalization routine. In actual calculations we
circumvent this difficulty using the following strategy.
First we pick a direction parallel to a short reciprocal-
lattice vector of the solid, G|. We choose the primitive
cell for the k-space integration to be a prism with its axis
aligned along G|. The component of AP directed along
G can be written

( 1) _ (0)

(A))

(14b)

where, in an obvious notation

e |G
PP = qu lzf” (i‘k") ok

The integration in the perpendicular direction poses no
special problems and can be performed by sampling over
a 2D mesh of k points generated, for example, using the
Monkhorst-Pack method.!? To perform the integral over
k, at each point in the k;, mesh we compute the cell-
periodic parts of the wave functions at the string of J k
points at k; =k, + ;G /J where j runs from 0 to J —1.
We then compute the variable ¢*'(k,) defined through

J—1
Im {In T det({uil), ui? )1, (5)
j=0

¢ (k)=

(A)' =¢

where it is understood that Ui n The

determinant in Eq. (15) is that of the M XM matrix
formed by allowing n and m to run over all valence
bands. With an analytic choice of cell-periodic wave
functions it can be verified that

¢”"(kl)leim eM(k,)

—iGyr
Il u(A)n_
0

&l () (R)
=—i3 fo dk ulln)10/0k |ul)) (16a)
n=1
so our expression for P(“ becomes
P =—(fq,/87) [ dk ™Mk, . (16b)

It is straightforward to confirm that the product over j in
Eq. (15) is independent of how the phases of the wave
functions are chosen. Changes of the phase of u{} can
change the value of the integral in Eq. (16) by an integer
multiple of 27. Correspondingly the arbitrary constant
in the definition of (k) given in Eq. (15) arises from
the fact that the imaginary part of the log of a complex
number is only defined up to a constant multiple of 2.
In practice the arbitrary constant is removed by compar-
ing ¢(”(kl with ¢{”(k,) using the argument outlined in
the previous paragraph.

We have in Egs. (14)-(16) all the ingredients necessary
for computing polarization changes in a practical calcula-
tion. Within this approach the need for supercells or
linear-response techniques is completely avoided.!! The
method is ideally suited to modern electronic structure
methods based on iterative diagonalization techniques,
which concentrate on computing the valence-band wave
functions only.!3

We illustrate the approach by computing the trans-
verse effective charge tensor and piezoelectric constant of
GaAs in a first-principles pseudopotential calculation.
The effective charge of GaAs may be determined by com-
puting the change in polarization which is induced on
making a small displacement of one sublattice with the
boundary condition E=0. For example, if we move the
Ga sublattice by a vector u, then the electronic contribu-
tion to the polarization difference between the distorted
and undistorted structures is

AP=(e/Q)ZE P u , (17)

where Z " is the electronic contribution to the effective
charge. The piezoelectric tensor ¥ is the strain derivative
of the polarization under boundary conditions of E=0.*
In the zinc-blende structure there is only one independent
component of the piezoelectric tensor, ¥, The
piezoelectric tensor can be thought of as the sum of two
independent terms. The first term, which we denote by

7% following Ref. 11, arises from the change in polariza-
tlon when the ions are subjected to a homogeneous strain.
The second contribution owes its origin to the relative
displacement of the sublattices, and can be expressed in
terms of the effective charges and internal strain parame-
ters.*!! It is shown in Ref. 11 that

(@®/e)y =7 iu=(a’/e)y P +Z8,.6 , (18)

where £ is the internal strain parameter.

Our first-principles calculations used norm-conserving
nonlocal pseudopotentials.!* We note in passing that,
strictly speaking, a nonlocal potential causes a
modification to the momentum operator in Eq. (1).2 How-
ever, in this situation there is a precisely compensating
change to the Hamiltonian for the cell-periodic part of
the wave function, and equations from Eq. (4) on remain
correct at they stand. Our calculation treated exchange
and correlation in the local-density approximation using
the Wigner form. The wave functions were expanded us-
ing a 20-Ry plane-wave cutoff. All calculations of the
self-consistent Kohn-Sham potential were performed
with a (4,4,4) Monkhorst-Pack mesh.!? Calculations in
the cubic structure were performed at the theoretical lat-
tice constant a, which came out to be 5.576 A with the
above parameters. For the calculations of the effective
charge we displaced the Ga atom a distance of 0.0la in
the (001) direction and computed the polarization change
in the z direction. The integration mesh for computing
AP used 16 k points in the k; mesh and a string of 10 k
points in the parallel direction. We obtained 7| by com-
puting the change in polarization in the z directions in-
duced by applying a 1% xy shear strain to the crystal.

The results of our calculation are summarized in Table
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I. The total value of Z§, (electronic plus ionic contribu-
tions) came out to be 1.984, in excellent agreement with
the value of 1.994 obtained from pseudopotential linear-
response calculations.!! Both sets of theoretical values of
Z g, are about 8% smaller than the experimental value.
Our calculations on the strained crystal yielded a
(a%/e)y\y of —1.352. The value agrees to better than
5% with the result obtained from linear-response
methods.!! Our overall value for the piezoelectric con-
stant ¥, was —O0.28, compared with an experimental
value of —0.32. The agreement between our calculation
and experiment is reasonable, given that the two terms in
Eq. (18) show a strong tendency to cancel. We have
checked that our calculation is converged with respect to
k-point set and plane-wave cutoff, and that the polariza-
tion response is linear in the applied perturbation. We at-
tribute the small differences between our results and
those of Gironcoli, Baroni, and Resta!'! to the use of
different pseudopotentials and parametrizations of the ex-
change and correlation potential.

Before closing we note that it is tempting to physically
identify the quantity P*’ defined in Eq. (8b) as the abso-
lute polarization of the perturbed crystal. Of course it
would have to be understood that the polarization,
defined in this way, would only be well defined modulo
efR/Q. The conditions under which such an
identification is useful will be the subject of a future com-
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TABLE 1. Theoretical and experimental piezoelectric
response of GaAs.
Linear
This work response® Experiment
a (A) 5.576 5.496 5.642
& 0.542 0.528 0.55
zg, 1.984 1.994 2.16
(a?/e)y\? —1.352 —1.405
Via —0.28 —0.35 —0.32

#Reference 11.

munication.

In conclusion, we have shown that adiabatic changes in
the Kohn-Sham Hamiltonian lead to polarization
changes in the solid which can be computed in terms of
the initial and final valence-band wave functions of the
system. This result forms the basis for a scheme for com-
puting polarization changes of solids within the context
of first-principles total-energy calculations.
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