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The orbital motion of electrons in a three-dimensional solid can generate a pseudoscalar magneto-

electric coupling �, a fact we derive for the single-particle case using a recent theory of polarization in

weakly inhomogeneous materials. This polarizability � is the same parameter that appears in the ‘‘axion

electrodynamics’’ Lagrangian �LEM ¼ ð�e2=2�hÞE � B, which is known to describe the unusual mag-

netoelectric properties of the three-dimensional topological insulator (� ¼ �). We compute � for a simple

model that accesses the topological insulator and discuss its connection to the surface Hall conductivity.

The orbital magnetoelectric polarizability can be generalized to the many-particle wave function and

defines the 3D topological insulator, like the integer quantum Hall effect, in terms of a topological ground-

state response function.
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Magnetoelectric couplings in solids have recently been
the subject of intense experimental and theoretical inves-
tigations [1–3]. A quantity of central importance is the
linear magnetoelectric polarizability �ij defined via

�ij ¼
@Mj

@Ei

��������B¼0
¼ @Pi

@Bj

��������E¼0
; (1)

where E and B are electric and magnetic fields, P and M
are the polarization and magnetization, and the equality
can be obtained from commuting derivatives of an appro-
priate free energy. In general the tensor � has nine inde-
pendent components, and can be decomposed as

�ij ¼ ~�ij þ �e2

2�h
�ij; (2)

where the first term is traceless and the second term,
written here in terms of the dimensionless parameter �, is
the pseudoscalar part of the coupling. Here we focus on
magnetoelectric coupling resulting from the orbital
(frozen-lattice) magnetization and polarization, which we
label the orbital magnetoelectic polarizability (OMP).

In field theory, the pseudoscalar OMP coupling is said to
generate ‘‘axion electrodynamics’’ [4], and corresponds to
a Lagrangian of the form (c ¼ 1)

�LEM ¼ �e2

2�h
E �B ¼ �e2

16�h
�����F��F��: (3)

An essential feature of the axion theory is that, when the
axion field �ðr; tÞ is constant, it plays no role in electro-
dynamics; this follows because � couples to a total deriva-
tive, �����F��F�� ¼ 2�����@�ðA�F��Þ, and so does not

modify the equations of motion. However, the presence of
the axion field can have profound consequences at surfaces
and interfaces, where gradients in �ðrÞ appear.

A second essential feature is that electrodynamics is
invariant under � ! �þ 2� [4]. In order to reconcile

this peculiar fact with the phenomenology of the magneto-
electric effect, observe that the axion coupling can alter-
natively be described in terms of a surface Hall
conductivity �H whose value �e2=2�h is determined by
bulk properties, but only modulo the quantum e2=h. More
generally, at an interface between two samples, �H ¼
ð�1 � �2 þ 2�rÞe2=2�h, where the integer r depends on
the details of the interface. Recall that, in general, a 2D
gapped crystal has an integer invariant C in terms of which
its Hall conductivity is �H ¼ Ce2=h [5]. The ‘‘modulo
e2=h,’’ or integer r, discussed above corresponds to modi-
fying the surface or interface by adsorbing a surface layer
of nonzero C.
When time-reversal (T) invariance is present, the TKNN

invariants vanish, but other invariants arise that have been
the focus of much recent work. In 2D there is a Z2 invariant
[6] distinguishing ‘‘ordinary’’ from ‘‘Z2-odd’’ insulators,
with ‘‘quantum spin Hall’’ states [7,8] providing examples
of the latter. In 3D there is a similar invariant [9–11] that
can be computed either from the 2D invariant on certain
planes [9] or from an index involving the eight T-invariant
momenta [11]. If this is odd, the material is a ‘‘strong
topological insulator’’ (STI). In the context of the OMP,
note that T maps � ! ��; the ambiguity of � modulo 2�
then implies that T invariance is consistent with either � ¼
0 or � ¼ �, with the latter corresponding to the STI [12].
Note that if T invariance extends to the surfaces, these
become metallic by virtue of topologically protected edge
states, as observed experimentally for the Bi0:9Sb0:1 system
[13]. If the surface is gapped by a T-breaking perturbation,
then �H ¼ e2=2h modulo e2=h at the surface of a STI
[4,12,14].
In the noninteracting case, a Berry-phase expression for

� has been given in terms of the bulk band structure by Qi
et al. [12] by integrating out electrons in one higher dimen-
sion. Defining the Berry connection A	


j ¼ ihu	j@jju
i,
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where ju
i is the cell-periodic Bloch function of occupied
band 
 and @j ¼ @=@kj, they obtain

� ¼ 1

2�

Z
BZ

d3k�ijk Tr

�
Ai@jAk � i

2

3
AiAjAk

�
;

(4)

where the trace is over occupied bands. Note that wave-
vector-dependent unitary transformations (‘‘gauge trans-
formations’’) on the set of occupied wave functions cannot
affect bulk physical properties.

In this Letter, we first provide an alternate derivation of
Eq. (4) for the OMP. Our derivation clarifies that � is a
polarizability and in fact describes a contribution to mag-
netoelectric polarizability from extended orbitals. The
derivation follows from an extension [15] of the Berry-
phase theory of polarization [16] to the case of slow spatial
variations of the Hamiltonian. (Indeed, the OMP angle � is
a bulk property in exactly the same sense as electric
polarization [16,17].) We find that the OMP can be gener-
alized to the interacting case and calculated from the
many-particle wave function, even though Eq. (4) is not
valid; this reflects a subtle difference between OMP and
polarization. Explicit numerical calculations on model
crystals are presented to validate the theory, establish the
equivalence of Eq. (4) to the prior definition, and illustrate
how a nonzero � corresponds to a ‘‘fractional’’ quantum
Hall effect at the surface of a magnetoelectric or topologi-
cal insulator [4,12,14].

From Eq. (1) it is evident that the OMP can be viewed in
several ways. (i) It describes the electric polarization aris-
ing from the application of a small magnetic field. (ii) It
describes the orbital magnetization arising from the appli-
cation of a small electric field. (iii) It also gives the (dis-
sipationless) surface Hall conductivity �H at the surface of
the crystal, provided that the surface is insulating. Note that
(iii) follows from (ii): for a surface with unit normal n̂ and
electric field E, the resulting surface current K ¼ M� n̂
is proportional to E� n̂. There is an elegant analogy here
to the case of electric polarization, where the surface
charge of an insulating surface is determined, modulo the
quantum e=S, by the bulk band structure alone (S is the
surface cell area).

The above discussion suggests two approaches to deriv-
ing a bulk formula for the OMP �. One is to follow (ii) and
compute the orbital magnetization [18,19] in an applied
electrical field. We focus here on (i) instead, working via
dP=dB. The modern theory of polarization starts from the
polarization current jP ¼ dP=dt under slow deformation
of the Bloch Hamiltonian, and contains, to first order in
d=dt, one power of the Berry curvature defined below [16].
Using semiclassical wave packet dynamics, Xiao et al. [15]
have shown how to compute the polarization current to
second order and to incorporate slow spatial variations
in the electronic Hamiltonian. For the case of an ortho-
rhombic 3D crystal with M occupied bands in which the
slow spatial variation occurs along the y direction in a
supercell of length ly, they obtain

h�PðinÞ
x i ¼ e

4

Z 1

0
d�

Z
BZ

d3k

ð2�Þ3
Z ly

0

dy

ly
�ijkl Tr½F ijF kl�

(5)

for the change in the supercell-averaged polarization aris-
ing from adiabatic currents that are inhomogeneously in-
duced as a global parameter � evolves from 0 to 1. Here
indices ijkl run over ðkx; ky; y; �Þ,F ij ¼ @iAj � @jAi �
i½Ai;Aj� is the Berry curvature tensor (A	


� ¼
ihu	j@�ju
i), and the trace and commutator refer to band

indices.
BecauseF is gauge covariant, the integrand in Eq. (5) is

explicitly gauge invariant; it is the non-Abelian second
Chern class [20], so that Eq. (5) is path invariant modulo
a quantum e=azly, where az is the lattice constant in the z

direction. Moreover, the � integral can be performed to
obtain an expression in terms of the non-Abelian Chern-
Simons 3-form [20]. Thus,

hPðinÞ
x i ¼ e

Z
BZ

d3k

ð2�Þ3
Z ly

0

dy

ly
�ijk Tr

�
Ai@jAk

� 2i

3
AiAjAk

�
; (6)

where ijk now run only over ðkx; ky; yÞ. Here the integrand
is not gauge invariant, but the integral is gauge invariant
modulo the quantum e=azly.

We apply this result to study the polarization

hPðinÞ
x i ¼ Be2

@

Z
BZ

d3k

ð2�Þ3 �ijk Tr
�
Ai@jAk

� i
2

3
AiAjAk

�
(7)

induced by a magnetic field described by the inhomoge-
neous vector potential A ¼ Byẑ with B ¼ h=eazly, i.e.,

a B field along x̂ with one flux quantum threading the
supercell. This has the effect of taking kz ! kz þ eBy=@,
and this is the only y dependence in the Hamiltonian, so
that j@yui ¼ ðBe=@Þj@kzui and where ijk now run over

ðkx; ky; kzÞ. Using Eqs. (1) and (2) we arrive directly at

Eq. (4).
There is an important geometrical relationship in this

(noninteracting) derivation that applies equally well to
the many-body case and gives a bulk interpretation of
the 2� ambiguity in �, whose surface interpretation was
in terms of allowed surface integer quantum Hall ef-
fect (IQHE) layers. Polarization in a crystal is defined
modulo the ‘‘quantum of polarization’’ [16] which, for
the flux-threaded supercell of Eq. (7), is �Px ¼ e=azly.

Since the magnetic field is Bx ¼ h=eazly, it follows that

�ðPx=BxÞ ¼ e2=h. Hence the unit-cell-independent ambi-
guity of dP=dB results from the relationship in a finite
periodic system between the unit-cell-dependent polariza-
tion quantum and the quantization of applied flux, and this
relationship remains valid in the many-body case.
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Before studying the OMP in a specific model, we discuss
its symmetry properties and how to obtain it when Bloch
states are unavailable, as in the many-particle case. Clearly
the combination E � B in Eq. (3) is odd under T and under
inversionP (although it is even under the combinationPT).
It is also odd under any improper rotation, such as a simple
mirror reflection. This implies that � ¼ �� if the crystal
has any of the above symmetries. This would force an
aperiodic coupling to vanish, but since � is only well
defined modulo 2�, it actually only forces � ¼ 0 or �.
Thus, one can obtain an insulator with quantized � ¼ � not
only for T-invariant systems (regardless of whether they
obey inversion symmetry), but also for inversion- and
mirror-symmetric crystals regardless of T symmetry [14].
When none of these symmetries are present, one generi-
cally has a nonzero (and non-�) value of �, but still
retaining the simple scalar form of Eq. (3).

In an interacting system, the OMP should be obtained
from the many-particle wave function. However, modify-
ing Eq. (4) to the Abelian Chern-Simons integral over the
many-body wave function fails [21], in important contrast
to the case of the polarization (the integral of A), where
such a generalization works [17]. Instead, the OMP can be
found using the change in the many-body polarization due
to an applied magnetic field to compute dP=dB, i.e., the
many-body version of the supercell dP=dB calculation.
This fact is important beyond computing � with inter-
actions, as it defines the topological insulator phase in
the many-body case more simply than before [22]. Like
the IQHE, the topological insulator is defined via a re-
sponse function (dP=dB) to a perturbation that, in the limit
of a large system with periodic boundary conditions, is
locally weak and hence does not close the insulating gap.
In the IQHE, this response function is to a boundary phase
(i.e., a flux that does not pass through the 2D system),
while for the topological insulator, the defining response is
to a magnetic flux through the 3D system.

In the remainder of this Letter, we demonstrate the
above theory via numerical calculations on a tight-binding
Hamiltonian that generates nonzero values of �, then dis-
cuss experimental measurements of �. We start with the
model of Fu, Kane, and Mele [11] for a 3D topological
insulator on the diamond lattice,

HFKM ¼ X
hiji

tijc
y
i cj þ i

4�SO

a2

X
hhijii

cyi � � ðd1
ij � d2ijÞcj: (8)

In the first term, the nearest-neighbor hopping amplitude
depends on the bond direction; we take tij ¼ 3tþ � for

direction [111] (in the conventional fcc unit cell of linear
size a) and tij ¼ t for the other three bonds. The second

term describes spin-dependent hopping between pairs of
second neighbors hhijii, where d1

ij and d2ij are the connect-

ing first-neighbor legs and � are the Pauli spin matrices.
With j�j< 2t and �SO sufficiently large, this model has a
direct band gap of 2j�j.

To break T we add a staggered Zeeman field with

opposite signs on the two fcc sublattices A and B, h �
ðPi2Ac

y
i �ci �

P
i2Bc

y
i �ciÞ. We take jhj ¼ m sin� and

choose h in the [111] direction; setting � ¼ m cos� and
varying the single parameter � keeps the gap constant
and interpolates smoothly between the ordinary (� ¼ 0)
and the topological (� ¼ �) insulator.
We have calculated the OMP angle � using four different

methods with excellent agreement (Fig. 1). First, we obtain
� from Eq. (4); this requires a smooth gauge forA, which
can be found using now-standard Wannier-based methods
[23]. Results are shown for � ¼ �=4 and � ¼ �=2 (filled
squares).
Next, we have calculated the polarization [16]

Pi ¼ e
Z
BZ

d3k

ð2�Þ3 TrAi (9)

resulting from a single magnetic flux quantum in a large
supercell. Varying the supercell size (and thereby B) allows
us to approximate dP=dB, yielding the open squares in
Fig. 1. The points in Fig. 1 are from the surface Hall
response in a slab geometry, described below. Finally, to
obtain the curve in Fig. 1, we also computed �ð�Þ from the
second Chern expression [12,15]

� ¼ 1

16�

Z �

0
d�0 Z d3k�ijkl Tr½F ijðk; �0ÞF klðk; �0Þ�

(10)

[derived above as Eq. (5)]. Clearly, the various approaches
are numerically equivalent.
We now discuss the surface Hall conductivity, whose

fractional part in units of e2=h is just �=2� [4]. Consider a
material with coupling � in a slab geometry that is finite in
the ẑ direction and surrounded by � ¼ 0 vacuum. The
simplest interfaces will then lead to �H ¼ �e2=ð2�hÞ at
the top surface and��e2=ð2�hÞ at the bottom surface, for
a total �xy of zero. More generally, arbitrary surface quan-

tumHall layers change the total integer quantumHall state,
but not the fractional parts at each surface.

4 2 3 4

4

2

3 4

FIG. 1. The magnetoelectric polarizability � (in units of
e2=2�h). The filled squares are computed by the Chern-
Simons form, Eq. (4). The open squares are dP=dB from
Eq. (9). The points are obtained by layer-resolved �H calcula-
tions using Eq. (12). The curve is obtained from Eq. (10).
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The spatial contributions to the Hall conductance in the
slab geometry can be resolved as follows. The unit cell is a
supercell containing some number N of original unit cells
in the ẑ direction, with translational invariance remaining
in the x̂ and ŷ directions. The TKNN integer for the entire
slab is [5,24]

C ¼ i

2�

Z
d2kTr½P�ij@iP@jP �: (11)

Here i and j take the values kx and ky and P ¼ P

ju
ihu
j

is the projection operator onto the occupied subspace
(
 runs over occupied bands). To find how different ẑ

layers contribute to C, define a projection ~P n onto layer
n within the supercell, and compute

CðnÞ ¼ i

2�

Z
d2kTr½P�ijð@iP Þ ~P nð@jP Þ�: (12)

The results, presented in Fig. 2, confirm that the surface
layers have half-integer Hall conductance when � ¼ � in
(8) and that the sign on each surface is switched by local
T-breaking perturbations (in this example, a uniform
Zeeman coupling in the surface layer).

To gain some insight into the microscopic origin of � in
the noninteracting case, using Eq. (4) we have calculated �
for a Hamiltonian that breaks PT (as well as P and T) by
adding a weak, uniform (i.e., not staggered) Zeeman cou-
pling. For some values of � this lifts all degeneracies,
enabling us to isolate the single band and interband con-
tributions to � and to verify that, because interband con-
tributions are nonzero in general, � is a property of the
whole occupied spectrum (unlike polarization, which is a
sum of individual band contributions). A single filled band
can have nonzero � only if there are more than two bands in
total [25].

Experimental detection of � is more difficult for a topo-
logical insulator than for a generic magnetoelectric insu-
lator because some T-breaking perturbation is needed to
gap the surface state. Furthermore, a large surface density
of states, as in Bi0:9Sb0:1, may complicate the measure-
ment: while even a weak magnetic field will in principle
lead to a gap and half-integer quantum Hall effect at each
surface, the large number of filled surface Landau levels

may make it difficult to isolate the half-integer part of
surface �H. In the presence of broken discrete symmetries,
as in antiferromagnets or multiferroics, the surface gap
exists naturally and experiments are easier. For example,
the theoretical methods of this Letter could be used to
compute the orbital part of the recently measured � in
Cr2O3 [3].
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FIG. 2 (color online). The layer-resolved Hall conductivity (in
units of e2=h) at � ¼ � in a slab of 20 layers, with m ¼ t=2 and
�SO ¼ t=4, terminated in (�111) planes.
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