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Fig. 6 The principle of equivalence implies the gravitational redshift

he clearly states that the equivalence of both systems is certain as far as we restrict
ourselves to purely mechanical phenomena, but it will acquire a deeper meaning if
we extend the equivalence to all laws of nature. Then we have a principle which has
a great heuristic meaning. In his biography A. Einstein: Creator and Rebel Banesh
Hoffmann, Einstein’s direct collaborator, writes: “In the paper of 1907. . . Einstein
had already begun his attack on the problem of acceleration, and he returned to it in
his Prague paper of 1911. His arguments, particularly in its 1911 form, must rank as
one of the most remarkable in the history of science.” The principle of equivalence
is then applied to derive the gravitational redshift—for the first time in a beautifully
pedagogical way (see Fig. 6). As Mark Twain writes: “The nice thing about Science
is that one gets such wholesale returns of conjecture from such a trifling investment
of fact”. . .

What is the present-day formulation of the (weak) equivalence principle? Employ-
ing Cliff Will’s formulation from his Living Reviews article [19]:

• Test bodies fall with the same acceleration independently of their structure or
composition.

• The outcome of any local non-gravitational experiment is independent of: (a) the
velocity of the local inertial frame in which it is performed, (b) where and when
in the universe it is performed.

From the time of Newton and Eötvös it has been a continuing effort to measure a
possible violation of the first item. After the 1950s, it is connected with the names of
Dicke in Princeton, Braginskij in Moscow and, most recently, with the group at the
University ofWashingtonwhich used a torsion balance tray to study the accelerations

Einstein: Prague 1911-1912
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FIG. 2. Temperature dependence of the Hall coefficient

of SmB6 measured with B =17 kG.

FIG. 1. Temperature dependence of resistivity of Sm86.

K. The size of the low-temperature increase is nearly
a factor of 104 and its saturation temperature is about
3 K, indicating that the sample is close to being
stoichiometric. The temperature dependence of the
Hall coefficient is presented in Fig. 2. Between 300
and 58 K RH is positive and never larger than
10 ' cm'/C. Below 58 K RH is negative, its magni-
tude increasing strongly between 58 and 4 K to a
value near 30 cm3/C, and then decreasing slightly
between 4 and 2 K.
Above 57 K the values of R~ are very similar to

those reported previously by Nickerson et al. , ' except
that the high-temperature zero crossing occurs 3—5 K
higher in the previous data. However, there are
striking differences from the previous data at lower
temperatures. For a sample with a low-temperature
resistance rise of about 1.5 orders of magnitude,
Nickerson et al. found that RH was negative with a
magnitude that increased to a peak value of
0.04 cm3/C around 12 K and then decreased sharply
as the temperature was lowered further, so that a
low-temperature zero crossing to positive values oc-
curred at about 5 K. The temperature of the peak in
~ RH ~

was just above the temperature, —10 K, at
which the resistivity rise began to saturate in this
sample. For a second sample with a larger low-

temperature resistivity rise, about 2.5 orders of mag-
nitude, RH was qualitatively the same but with in-
teresting quantitative differences. The maximum in
the magitude of RH occurred at about 8.5 K, with a
larger value, about 0.85 cm3/C (for this sample p and
p,H w'ere published so RH has been deduced with
some uncertainty, from the relation RH =ppH).
Again the temperature of the peak in ~RH ~

was just
above the resistance rise saturation temperature,
about 6.5 K in this sample. The low-temperature
zero crossing to a positive value is at a slightly higher
temperature than in the first sample, near 6 K.
Taking previously published data together with the

new data presented in Figs. 1 and 2, the following
pattern emerges. As sample stoichiometry improves,
the size of the low-temperature resistance rise and
the magnitude of the negative RH peak increase to-
gether, while the temperature at which the resistivity
rise saturates and the temperature of the maximum
in RH decrease together. In the data of Fig. 2 the
low-temperature zero crossing of RH to a positive
value does not even occur. This strongly suggests
that the saturation of p is correlated with the peaking
of RH and that both are extrinsic. Similarly it ap-
pears that a large magnitude of RH accompanies a
high value of p, and both are intrinsic.
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K. The size of the low-temperature increase is nearly
a factor of 104 and its saturation temperature is about
3 K, indicating that the sample is close to being
stoichiometric. The temperature dependence of the
Hall coefficient is presented in Fig. 2. Between 300
and 58 K RH is positive and never larger than
10 ' cm'/C. Below 58 K RH is negative, its magni-
tude increasing strongly between 58 and 4 K to a
value near 30 cm3/C, and then decreasing slightly
between 4 and 2 K.
Above 57 K the values of R~ are very similar to

those reported previously by Nickerson et al. , ' except
that the high-temperature zero crossing occurs 3—5 K
higher in the previous data. However, there are
striking differences from the previous data at lower
temperatures. For a sample with a low-temperature
resistance rise of about 1.5 orders of magnitude,
Nickerson et al. found that RH was negative with a
magnitude that increased to a peak value of
0.04 cm3/C around 12 K and then decreased sharply
as the temperature was lowered further, so that a
low-temperature zero crossing to positive values oc-
curred at about 5 K. The temperature of the peak in
~ RH ~

was just above the temperature, —10 K, at
which the resistivity rise began to saturate in this
sample. For a second sample with a larger low-

temperature resistivity rise, about 2.5 orders of mag-
nitude, RH was qualitatively the same but with in-
teresting quantitative differences. The maximum in
the magitude of RH occurred at about 8.5 K, with a
larger value, about 0.85 cm3/C (for this sample p and
p,H w'ere published so RH has been deduced with
some uncertainty, from the relation RH =ppH).
Again the temperature of the peak in ~RH ~

was just
above the resistance rise saturation temperature,
about 6.5 K in this sample. The low-temperature
zero crossing to a positive value is at a slightly higher
temperature than in the first sample, near 6 K.
Taking previously published data together with the

new data presented in Figs. 1 and 2, the following
pattern emerges. As sample stoichiometry improves,
the size of the low-temperature resistance rise and
the magnitude of the negative RH peak increase to-
gether, while the temperature at which the resistivity
rise saturates and the temperature of the maximum
in RH decrease together. In the data of Fig. 2 the
low-temperature zero crossing of RH to a positive
value does not even occur. This strongly suggests
that the saturation of p is correlated with the peaking
of RH and that both are extrinsic. Similarly it ap-
pears that a large magnitude of RH accompanies a
high value of p, and both are intrinsic.

ARPES	! Surface	states

Xu	et.	al	PRB	88,	121102(R)	(2013)	
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where N(Ez) is the density of electronic states
per spin direction at the Fermi energy EF, p, &
is the Bohr magneton, and k& is Boltzmann's
constant. If we insert the above-quoted value for
y = 1.1 J/mole K' into Eq. (1), we obtain X =1.51
x10 ' emu/mole, in extremely good agreement
with our experimental. vat. ue of X at about 1 K,
again confirming the claim above, that we are
dealing with an electronic system that can be
described as a Fermi liquid.
The maximum resistivity is thought to be due

to incoherent scattering of conduction electrons
at the U ions and may, according to Friedel, "
be described by

FIG. 2. Temperature dependence of the electrical
resistivity of single-crystalline UBe&3. Inset: The low-
temperature part on an extended temperature scale.

superconducting transition at 0.86 K. As may be
seen from the inset in Fig. 2, the resistive tran-
siti.on to the superconducting state is much more
narrow in temperature than the transitions shown
in Fig. 1. These features are probably due to
residual inhomogeneities in the not yet optimized
samples.
For the room-temperature lattice constant of

the UBe» single crystal. s used in the present in-
vestigation we obtained 10.2607 A, resulting in a
nearest U-U distance of 5.130A in this compound.
According to Hil. l. 's earlier arguments" it may
therefore be expected that the 5f electrons of
the U ' ions are fairly well localized and with
any conventional view, certainly no occurrence
of superconductivity in such a system is antici-
pated. On the contrary, the common enhanced
increase of c~/T and X (not shown explicitly here),
as well as of p, with decreasing temperature be-
low 10 K rather indicate precursor effects to a
possibl. e magnetic phase transition.
This pronounced temperature dependence of all.

these properties just above T, makes a clear-cut
interpretation of the experimental. data somewhat
difficult. Nevertheless it is interesting to quote
some val. ues for physically important parameters
which we calculate from our experimental data.
If, as indicated above, the specific heat up to
about 1 K is interpreted as being of electronic
origin we can calculate the corresponding mag-
netic susceptibility of that electronic system us-
ing

X =2p B &(EF)= 3|zan y/" tza

where l =3 for f electrons, c=~z is the concen-
tration of scattering centers, Z is the number
of conduction electrons per atom, and kz = (3zz'Z/
0)' ' with 0 as the mean volume per atom. From
it we can calcul. ate Z and subsequently k F through

Z = [2(2 l+ 1)tzc/e2p ] ~4[@/3&2]z~4 (3)

From the experimental. value of p „we obtain
Z =0.81 per atom and k F=1.36&&10 em . Wi,thi, n
the Fermi-1. iquid model. we then deduce an effec-
tive mass of the fermions of m*= 192m, . The
still. rather high el.ectrieal resistivity at T, in-
dicates that superconducting parameters of the
present material should be cal.cul.ated in the dirty
limit. According to Hake, '~ (BH,2/&T)r is then
given by

(&H 2/&T)r =—4.48&104py, (4)

wherey is given in cgs units and p in 0 cm. In-
serting our experimental values for y and (BH„/
&T)r we obtain p =42 p,Q cm, the expected value
of the residual resistivity for T-0. Once ongoing
additional experiments give more information on
other supercondueting parameters of UBe» we
shall discuss them by comparing them with the
presently available normal- state properties.
In conclusion we feel. that the experimental. data

presented and described above show convincingly
that, as was anticipated, CeCu, Si, is not a singu-
larity of nature. " It seems again quite cl.ear that
the presence of f electrons is essential for the
occurrence of superconductivity in UBe», since
no traces of superconductivity were found in
LaBe», LuBe», and ThBe» down to 0.45 K.'
Since UBe» shows al. l. the interesting features
not onl.y in polycrystalline but also in its single-
crystal. line form at zero pressure, "this mater-
ial. is very well suited to investigation of the mi-

1597

Ott, Rudigier, Fisk and Smith, 
PRL, 1595 (1983)

UBe13
1974
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superconducting transition at 0.86 K. As may be
seen from the inset in Fig. 2, the resistive tran-
siti.on to the superconducting state is much more
narrow in temperature than the transitions shown
in Fig. 1. These features are probably due to
residual inhomogeneities in the not yet optimized
samples.
For the room-temperature lattice constant of

the UBe» single crystal. s used in the present in-
vestigation we obtained 10.2607 A, resulting in a
nearest U-U distance of 5.130A in this compound.
According to Hil. l. 's earlier arguments" it may
therefore be expected that the 5f electrons of
the U ' ions are fairly well localized and with
any conventional view, certainly no occurrence
of superconductivity in such a system is antici-
pated. On the contrary, the common enhanced
increase of c~/T and X (not shown explicitly here),
as well as of p, with decreasing temperature be-
low 10 K rather indicate precursor effects to a
possibl. e magnetic phase transition.
This pronounced temperature dependence of all.

these properties just above T, makes a clear-cut
interpretation of the experimental. data somewhat
difficult. Nevertheless it is interesting to quote
some val. ues for physically important parameters
which we calculate from our experimental data.
If, as indicated above, the specific heat up to
about 1 K is interpreted as being of electronic
origin we can calculate the corresponding mag-
netic susceptibility of that electronic system us-
ing

X =2p B &(EF)= 3|zan y/" tza

where l =3 for f electrons, c=~z is the concen-
tration of scattering centers, Z is the number
of conduction electrons per atom, and kz = (3zz'Z/
0)' ' with 0 as the mean volume per atom. From
it we can calcul. ate Z and subsequently k F through

Z = [2(2 l+ 1)tzc/e2p ] ~4[@/3&2]z~4 (3)

From the experimental. value of p „we obtain
Z =0.81 per atom and k F=1.36&&10 em . Wi,thi, n
the Fermi-1. iquid model. we then deduce an effec-
tive mass of the fermions of m*= 192m, . The
still. rather high el.ectrieal resistivity at T, in-
dicates that superconducting parameters of the
present material should be cal.cul.ated in the dirty
limit. According to Hake, '~ (BH,2/&T)r is then
given by

(&H 2/&T)r =—4.48&104py, (4)

wherey is given in cgs units and p in 0 cm. In-
serting our experimental values for y and (BH„/
&T)r we obtain p =42 p,Q cm, the expected value
of the residual resistivity for T-0. Once ongoing
additional experiments give more information on
other supercondueting parameters of UBe» we
shall discuss them by comparing them with the
presently available normal- state properties.
In conclusion we feel. that the experimental. data

presented and described above show convincingly
that, as was anticipated, CeCu, Si, is not a singu-
larity of nature. " It seems again quite cl.ear that
the presence of f electrons is essential for the
occurrence of superconductivity in UBe», since
no traces of superconductivity were found in
LaBe», LuBe», and ThBe» down to 0.45 K.'
Since UBe» shows al. l. the interesting features
not onl.y in polycrystalline but also in its single-
crystal. line form at zero pressure, "this mater-
ial. is very well suited to investigation of the mi-

1597

Ott, Rudigier, Fisk and Smith, 
PRL, 1595 (1983)

UBe13
1974Bucher,et al PRB, 11, 440 (1975).
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vestigation we obtained 10.2607 A, resulting in a
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According to Hil. l. 's earlier arguments" it may
therefore be expected that the 5f electrons of
the U ' ions are fairly well localized and with
any conventional view, certainly no occurrence
of superconductivity in such a system is antici-
pated. On the contrary, the common enhanced
increase of c~/T and X (not shown explicitly here),
as well as of p, with decreasing temperature be-
low 10 K rather indicate precursor effects to a
possibl. e magnetic phase transition.
This pronounced temperature dependence of all.

these properties just above T, makes a clear-cut
interpretation of the experimental. data somewhat
difficult. Nevertheless it is interesting to quote
some val. ues for physically important parameters
which we calculate from our experimental data.
If, as indicated above, the specific heat up to
about 1 K is interpreted as being of electronic
origin we can calculate the corresponding mag-
netic susceptibility of that electronic system us-
ing

X =2p B &(EF)= 3|zan y/" tza

where l =3 for f electrons, c=~z is the concen-
tration of scattering centers, Z is the number
of conduction electrons per atom, and kz = (3zz'Z/
0)' ' with 0 as the mean volume per atom. From
it we can calcul. ate Z and subsequently k F through

Z = [2(2 l+ 1)tzc/e2p ] ~4[@/3&2]z~4 (3)

From the experimental. value of p „we obtain
Z =0.81 per atom and k F=1.36&&10 em . Wi,thi, n
the Fermi-1. iquid model. we then deduce an effec-
tive mass of the fermions of m*= 192m, . The
still. rather high el.ectrieal resistivity at T, in-
dicates that superconducting parameters of the
present material should be cal.cul.ated in the dirty
limit. According to Hake, '~ (BH,2/&T)r is then
given by

(&H 2/&T)r =—4.48&104py, (4)

wherey is given in cgs units and p in 0 cm. In-
serting our experimental values for y and (BH„/
&T)r we obtain p =42 p,Q cm, the expected value
of the residual resistivity for T-0. Once ongoing
additional experiments give more information on
other supercondueting parameters of UBe» we
shall discuss them by comparing them with the
presently available normal- state properties.
In conclusion we feel. that the experimental. data

presented and described above show convincingly
that, as was anticipated, CeCu, Si, is not a singu-
larity of nature. " It seems again quite cl.ear that
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk
Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-
fore any background subtraction. (B) Angular dependent quantum oscillation measure-
ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals
(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range
11 T < B < 34 T on a third crystal (closed square), to complement previous angular
dependent measurements on different crystals reported in ref. [25] and measured in
the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol
B stands for the applied magnetic induction. The angular dependence of the observed
quantum oscillations is in good agreement with the three-dimensional ellipsoidal model
characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit
lines). (Next page.)
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CeCoIn5

WF law violation are all related, and (ii) a good
indicator for their joint occurrence is a linear-T
resistivity. Returning to our comparison with
cuprates, a similar connection between r ~ T
and Z = 0 appears to exist there as well. Indeed, a
recent measurement of the (azimuthal) anisotropy
of the in-plane scattering rateG(f) in an overdoped
cuprate (24) revealed that G ~ Tat f = 0, where the
Fermi surface is eventually destroyed (at lower
doping), and G~T 2 at f = p/4, where it survives.

It is instructive to compare our findings with
the properties of other materials and theories of
quantum criticality. AT3/2 resistivity is observed in
CeIn3 near the pressure-tuned QCP where its AF
order vanishes (6). CeIn3 is the cubic parent
compound of tetragonal CeRhIn5 and, along with
the increase in c/a ratio, the ordering temperature
drops from TN = 10 K in the former to TN = 3.8 K
in the latter. However, they still have comparable
TSF (assuming that in CeIn3 TSF ≅ TN). CeCoIn5
encounters a further stretch of the c/a ratio, and
long-range AF order is no longer stabilized.
However, it can still be viewed as a layered ver-
sion of CeIn3, with similar in-plane correlations
and scattering. In this sense, the T3/2 dependence
observed in CeCoIn5 can be viewed as the result of
antiferromagnetic fluctuations that are character-
istic of the parent compound. Theoretically, a T3/2

resistivity is expected for AF critical fluctuations in
3D from the so-called quantum spin density wave
(SDW)model (17, 25, 26). In this scenario, critical
scattering is peaked at “hot spots” connected by the
AFwave vectors (25). As T→0, one would expect
the Fermi surface to remain sharp everywhere else,
and thus the WF law to prevail, as found here for
in-plane currents.

A T-linear resistivity is observed at the
composition-tuned QCP of CeCu5.9Au0.1 (7)
and field-tuned QCP of YbRh2Si2 (12), where
AF order is thought to disappear. [In these cases,
the power law is linear in both high-symmetry

directions (15, 27).] The fact that a linear power is
inconsistent with the SDW model for AF fluc-
tuations in 3D prompted the proposal of a 2D
version (28) and of an alternate theory, where
critical scattering is local in space and therefore
present at all wave vectors (29). These scenarios
would lead to a more extreme breakdown of FL
theory, because the Fermi surface is “hot” not
only at certain specific spots but everywhere. It
was argued in (8) that the specific heat data on
Ge-doped YbRh2Si2, which shows a C/T that
exceeds the log(1/T) dependence at low temper-
ature, may be an indication of such enhanced
breakdown. In CeCoIn5, the fact that it is in the
direction where r ~ T that the WF law is violated
is certainly consistent with this picture. Clearly, it
would be interesting to test the WF law in
YbRh2Si2.

Bringing together our findings for T→0 and
T > 0, a picture of qualitative anisotropy emerges,
not present in either the SDW model or the local
criticality model, at least in their current forms.
The characteristic spin fluctuation temperature
TSF vanishes at the QCP for transport along the c
axis but not in the plane. As a result, the break-
down of FL theory is extreme in the c direction:
rc ~ T and wc ~ T down to the lowest temper-
atures and the T = 0 Fermi surface is blurred, that
is, the quasiparticle Z parameter vanishes, in re-
gions around the c-axis direction.

A possible origin for this anisotropic critical-
ity is an anisotropic spin fluctuation spectrum.
First, an AF instability is present in all three
CeMIn5 compounds (M = Co, Rh, Ir), as shown
by the fact that magnetic ordering can be induced
by Cd doping (30). Second, a magnetic field does
tune the magnetism. In CeRhIn5 under pressure
(where it becomes in many ways more similar to
CeCoIn5, e.g., by developing superconductivity
with the same Tc), a magnetic field stabilizes
long-range magnetic order (31, 32). In CeCoIn5,
it is the magnetic fluctuations that are tuned by a
magnetic field (21), with TSF starting at a value
equivalent to that of CeRhIn5 at high fields and
then lowered to a minimum at Hc. Third, the AF
fluctuations in CeCoIn5 have strongly anisotrop-
ic character (33), with magnetic moments well
coupled in-plane but weakly coupled interplane.
This is consistent with the helical ordering of
moments in CeRhIn5, commensurate in-plane
and incommensurate along the c axis. Therefore,
it seems natural to link this uniaxial anisotropy
with the observed anisotropy in TSF, power laws,
and Z(q). What is not yet known is whether a
scenario of AF critical fluctuations can indeed
cause a violation of the WF law at T→0.

However, the AF scenario is not the only
candidate for the anisotropic quantum criticality
of CeCoIn5. The “Kondo breakdown”model pro-
posed recently (23, 34), a type of deconfined
QCPwhere the hybridization between conduction
and f electrons goes to zero, captures some of the
key signatures—absence of magnetic order in the
phase diagram, strong anisotropy, multiple ener-
gy scales, and a T-linear behavior of both charge

and heat resistivities. Proximity to a Pomeranchuk
instability of the Fermi surface can also cause
anisotropy in electronic liquids (7). Recent cal-
culations show that the transport decay rate at
such a QCP has a linear T dependence every-
where on the Fermi surface except at “cold”
points, resulting in a T3/2 dependence of the
resistivity (35).
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Fig. 3. Anisotropic quantum criticality. Electrical
resistivity at the QCP (at H = 5.3, T ≅ Hc) for in-
plane (ra) and inter-plane (rc) current directions.
rc (T) remains linear over a 100-fold increase in
magnitude. By contrast, ra is linear only above a
characteristic fluctuation temperature TSF ≅ 4 K
(arrow) (18). (Inset) Thermal resistivity (wc ≡ L0T/kc)
at the QCP, for inter-plane transport. wc is perfectly
linear down to the lowest temperature.
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WF law violation are all related, and (ii) a good
indicator for their joint occurrence is a linear-T
resistivity. Returning to our comparison with
cuprates, a similar connection between r ~ T
and Z = 0 appears to exist there as well. Indeed, a
recent measurement of the (azimuthal) anisotropy
of the in-plane scattering rateG(f) in an overdoped
cuprate (24) revealed that G ~ Tat f = 0, where the
Fermi surface is eventually destroyed (at lower
doping), and G~T 2 at f = p/4, where it survives.

It is instructive to compare our findings with
the properties of other materials and theories of
quantum criticality. AT3/2 resistivity is observed in
CeIn3 near the pressure-tuned QCP where its AF
order vanishes (6). CeIn3 is the cubic parent
compound of tetragonal CeRhIn5 and, along with
the increase in c/a ratio, the ordering temperature
drops from TN = 10 K in the former to TN = 3.8 K
in the latter. However, they still have comparable
TSF (assuming that in CeIn3 TSF ≅ TN). CeCoIn5
encounters a further stretch of the c/a ratio, and
long-range AF order is no longer stabilized.
However, it can still be viewed as a layered ver-
sion of CeIn3, with similar in-plane correlations
and scattering. In this sense, the T3/2 dependence
observed in CeCoIn5 can be viewed as the result of
antiferromagnetic fluctuations that are character-
istic of the parent compound. Theoretically, a T3/2

resistivity is expected for AF critical fluctuations in
3D from the so-called quantum spin density wave
(SDW)model (17, 25, 26). In this scenario, critical
scattering is peaked at “hot spots” connected by the
AFwave vectors (25). As T→0, one would expect
the Fermi surface to remain sharp everywhere else,
and thus the WF law to prevail, as found here for
in-plane currents.

A T-linear resistivity is observed at the
composition-tuned QCP of CeCu5.9Au0.1 (7)
and field-tuned QCP of YbRh2Si2 (12), where
AF order is thought to disappear. [In these cases,
the power law is linear in both high-symmetry

directions (15, 27).] The fact that a linear power is
inconsistent with the SDW model for AF fluc-
tuations in 3D prompted the proposal of a 2D
version (28) and of an alternate theory, where
critical scattering is local in space and therefore
present at all wave vectors (29). These scenarios
would lead to a more extreme breakdown of FL
theory, because the Fermi surface is “hot” not
only at certain specific spots but everywhere. It
was argued in (8) that the specific heat data on
Ge-doped YbRh2Si2, which shows a C/T that
exceeds the log(1/T) dependence at low temper-
ature, may be an indication of such enhanced
breakdown. In CeCoIn5, the fact that it is in the
direction where r ~ T that the WF law is violated
is certainly consistent with this picture. Clearly, it
would be interesting to test the WF law in
YbRh2Si2.

Bringing together our findings for T→0 and
T > 0, a picture of qualitative anisotropy emerges,
not present in either the SDW model or the local
criticality model, at least in their current forms.
The characteristic spin fluctuation temperature
TSF vanishes at the QCP for transport along the c
axis but not in the plane. As a result, the break-
down of FL theory is extreme in the c direction:
rc ~ T and wc ~ T down to the lowest temper-
atures and the T = 0 Fermi surface is blurred, that
is, the quasiparticle Z parameter vanishes, in re-
gions around the c-axis direction.

A possible origin for this anisotropic critical-
ity is an anisotropic spin fluctuation spectrum.
First, an AF instability is present in all three
CeMIn5 compounds (M = Co, Rh, Ir), as shown
by the fact that magnetic ordering can be induced
by Cd doping (30). Second, a magnetic field does
tune the magnetism. In CeRhIn5 under pressure
(where it becomes in many ways more similar to
CeCoIn5, e.g., by developing superconductivity
with the same Tc), a magnetic field stabilizes
long-range magnetic order (31, 32). In CeCoIn5,
it is the magnetic fluctuations that are tuned by a
magnetic field (21), with TSF starting at a value
equivalent to that of CeRhIn5 at high fields and
then lowered to a minimum at Hc. Third, the AF
fluctuations in CeCoIn5 have strongly anisotrop-
ic character (33), with magnetic moments well
coupled in-plane but weakly coupled interplane.
This is consistent with the helical ordering of
moments in CeRhIn5, commensurate in-plane
and incommensurate along the c axis. Therefore,
it seems natural to link this uniaxial anisotropy
with the observed anisotropy in TSF, power laws,
and Z(q). What is not yet known is whether a
scenario of AF critical fluctuations can indeed
cause a violation of the WF law at T→0.

However, the AF scenario is not the only
candidate for the anisotropic quantum criticality
of CeCoIn5. The “Kondo breakdown”model pro-
posed recently (23, 34), a type of deconfined
QCPwhere the hybridization between conduction
and f electrons goes to zero, captures some of the
key signatures—absence of magnetic order in the
phase diagram, strong anisotropy, multiple ener-
gy scales, and a T-linear behavior of both charge

and heat resistivities. Proximity to a Pomeranchuk
instability of the Fermi surface can also cause
anisotropy in electronic liquids (7). Recent cal-
culations show that the transport decay rate at
such a QCP has a linear T dependence every-
where on the Fermi surface except at “cold”
points, resulting in a T3/2 dependence of the
resistivity (35).
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Fig. 3. Anisotropic quantum criticality. Electrical
resistivity at the QCP (at H = 5.3, T ≅ Hc) for in-
plane (ra) and inter-plane (rc) current directions.
rc (T) remains linear over a 100-fold increase in
magnitude. By contrast, ra is linear only above a
characteristic fluctuation temperature TSF ≅ 4 K
(arrow) (18). (Inset) Thermal resistivity (wc ≡ L0T/kc)
at the QCP, for inter-plane transport. wc is perfectly
linear down to the lowest temperature.
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FIG. 1. Similarity of the functional form of ⇢̃(T ) and
⇢̃(B) in BaFe2(As1�x

P
x

)2. A. The temperature depen-
dence of the normalized resistivity ⇢̃(T ) = ⇢(T )/⇢(273K) is
T -linear at high-T , which appears as sub-linear behavior in
C when plotted against T

2. B. The MR qualitatively looks
B-linear at high-B, particularly at low temperatures. The
similarity with the resistance as a function of temperature is
striking when plotted against B2, as can be seen by compar-
ing C & D. The MR curves were taken at temperatures 4K,
14K, 25K, 31K, 38K and 60K.

our analysis since we are interested in high field and
high temperature e↵ects.[22]. Figure 1 (B) shows the
MR, which exhibits an analogous high field B-linear
dependence. The similarity between the transport as
a function of T and B is even more striking when the
data is plotted as T 2 and B2 on similar vertical scales,
as shown in Fig. 1 (C) and (D). Ideally we would
measure the MR of the normal state over a wide range of
magnetic field at zero (or at least very low) temperature
but superconductivity cuts o↵ the data below the upper
critical field µ0Hc2, restricting us to a narrow range
of the high magnetic field region where B-squared and
B-linear behaviors are di�cult to distinguish. However,
we observe that the MR qualitatively appears more
B-linear at low temperature and more B-squared at
high temperature (a fact that is widely known in these
and other unconventional superconductors [19, 27, 28]).
This gives us an important clue as to how magnetic field
and temperature influence transport - they appear to
compete to set the scale of the scattering.

To analyze the form of this competition, we look for
scaling behavior of the MR as a function of B and T
by plotting ⇢̃/T versus B/T . Note that we remove the
residual resistivity ⇢̃0 so that only the temperature de-
pendent part of the resistivity enters the analysis (see
Supplementary Information for details on the determi-
nation of ⇢̃0). When plotted this way, the data appear
to collapse to a single curve that is well described by a

hyperbolic function of B/T , as shown in Fig. 2 A. We
therefore formulate the following ansatz

~
⌧
=

q
(↵k

B

T )2 + (⌘µ
B

B)2 ⌘ �, (1)

where ↵ and ⌘ relate the scattering rate directly to the
temperature and magnetic field scales respectively [29].
A similar ansatz has been used to describe the tempera-
ture dependence of the optical conductivity in URu2Si2
[30], the magnetic susceptibility of CeCu6�x

Au
x

[29] and
the magnetic fluctuations of La1.86Sr0.14CuO4 [31]. Fur-
thermore, this expression naturally captures the limiting
cases of high field and high temperature. As long as
T � B the scattering rate will be T -linear, and vice
versa. Between these two limits magnetic field and tem-
perature compete to set the scale of the scattering.
In order to understand the degree to which magnetic

field and temperature each influence the scattering, it is
necessary to determine the scale factor, ⌘/↵. The vari-
able ↵ can be determined by the slope of the resistance
versus temperature at zero field. However, because there
is a cross over from T -linear to T -squared behavior as
temperature is lowered, we use the high-T limit of the
resistivity data to determine ↵. Similarly, we look at the
high-B limit to determine ⌘, choosing the lowest tem-
perature curve so that magnetic field is certain to be
the dominant energy scale. Comparing the slope of re-
sistance versus T and B in these regions, we find that
⌘/↵ = 1.01 ± 0.07 (see Supplementary Information for
details). With the value of the scale factor ⌘/↵ deter-
mined, we can plot all of the MR data, together with the
zero field resistance, as a function of � (Fig. 2 (B)). We
observe that for any combination of field and tempera-
ture, the resistance always approaches the same �-linear
dependence, as described by Eq. 1. Remarkably, this
behavior holds for a range of dopings near the critical
point (see Fig. 3). This is not expected in a conventional
metal, where the magnitude and form as a function of T
and B will in general be unrelated, each depending on
di↵erent details of the Fermi surface.
At temperatures below T

c

, we note a deviation from
Eq. 1. Although we cannot account for this in our ansatz,
it seems likely that the deviation is due to the presence
of other energy scales related to superconductivity. At
compositions far from the QCP, we expect this behavior
to break down completely as the materials crossover to
conventional Fermi liquids[4]. This is indeed observed,
as shown in Fig. 4 for compositions well beyond x

c

. A
more detailed description of the relevance of Eq. 1 as a
function of x will require a much more extensive study.
High magnetic fields have played an important role

in the study of QCPs, both as a tuning parameter to
drive systems toward a QCP [3, 5, 21] and in suppress-
ing competing ordered states to reveal a QCP [2]. Here
the role of magnetic field is quite di↵erent; our measure-
ments suggest that B-linear resistivity has the same ori-
gin as T -linear resistivity. This suggests a revision of the
doping-temperature quantum critical phase diagram to
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FIG. 1. Similarity of the functional form of ⇢̃(T ) and
⇢̃(B) in BaFe2(As1�x

P
x

)2. A. The temperature depen-
dence of the normalized resistivity ⇢̃(T ) = ⇢(T )/⇢(273K) is
T -linear at high-T , which appears as sub-linear behavior in
C when plotted against T

2. B. The MR qualitatively looks
B-linear at high-B, particularly at low temperatures. The
similarity with the resistance as a function of temperature is
striking when plotted against B2, as can be seen by compar-
ing C & D. The MR curves were taken at temperatures 4K,
14K, 25K, 31K, 38K and 60K.

our analysis since we are interested in high field and
high temperature e↵ects.[22]. Figure 1 (B) shows the
MR, which exhibits an analogous high field B-linear
dependence. The similarity between the transport as
a function of T and B is even more striking when the
data is plotted as T 2 and B2 on similar vertical scales,
as shown in Fig. 1 (C) and (D). Ideally we would
measure the MR of the normal state over a wide range of
magnetic field at zero (or at least very low) temperature
but superconductivity cuts o↵ the data below the upper
critical field µ0Hc2, restricting us to a narrow range
of the high magnetic field region where B-squared and
B-linear behaviors are di�cult to distinguish. However,
we observe that the MR qualitatively appears more
B-linear at low temperature and more B-squared at
high temperature (a fact that is widely known in these
and other unconventional superconductors [19, 27, 28]).
This gives us an important clue as to how magnetic field
and temperature influence transport - they appear to
compete to set the scale of the scattering.

To analyze the form of this competition, we look for
scaling behavior of the MR as a function of B and T
by plotting ⇢̃/T versus B/T . Note that we remove the
residual resistivity ⇢̃0 so that only the temperature de-
pendent part of the resistivity enters the analysis (see
Supplementary Information for details on the determi-
nation of ⇢̃0). When plotted this way, the data appear
to collapse to a single curve that is well described by a

hyperbolic function of B/T , as shown in Fig. 2 A. We
therefore formulate the following ansatz

~
⌧
=

q
(↵k

B

T )2 + (⌘µ
B

B)2 ⌘ �, (1)

where ↵ and ⌘ relate the scattering rate directly to the
temperature and magnetic field scales respectively [29].
A similar ansatz has been used to describe the tempera-
ture dependence of the optical conductivity in URu2Si2
[30], the magnetic susceptibility of CeCu6�x

Au
x

[29] and
the magnetic fluctuations of La1.86Sr0.14CuO4 [31]. Fur-
thermore, this expression naturally captures the limiting
cases of high field and high temperature. As long as
T � B the scattering rate will be T -linear, and vice
versa. Between these two limits magnetic field and tem-
perature compete to set the scale of the scattering.
In order to understand the degree to which magnetic

field and temperature each influence the scattering, it is
necessary to determine the scale factor, ⌘/↵. The vari-
able ↵ can be determined by the slope of the resistance
versus temperature at zero field. However, because there
is a cross over from T -linear to T -squared behavior as
temperature is lowered, we use the high-T limit of the
resistivity data to determine ↵. Similarly, we look at the
high-B limit to determine ⌘, choosing the lowest tem-
perature curve so that magnetic field is certain to be
the dominant energy scale. Comparing the slope of re-
sistance versus T and B in these regions, we find that
⌘/↵ = 1.01 ± 0.07 (see Supplementary Information for
details). With the value of the scale factor ⌘/↵ deter-
mined, we can plot all of the MR data, together with the
zero field resistance, as a function of � (Fig. 2 (B)). We
observe that for any combination of field and tempera-
ture, the resistance always approaches the same �-linear
dependence, as described by Eq. 1. Remarkably, this
behavior holds for a range of dopings near the critical
point (see Fig. 3). This is not expected in a conventional
metal, where the magnitude and form as a function of T
and B will in general be unrelated, each depending on
di↵erent details of the Fermi surface.
At temperatures below T

c

, we note a deviation from
Eq. 1. Although we cannot account for this in our ansatz,
it seems likely that the deviation is due to the presence
of other energy scales related to superconductivity. At
compositions far from the QCP, we expect this behavior
to break down completely as the materials crossover to
conventional Fermi liquids[4]. This is indeed observed,
as shown in Fig. 4 for compositions well beyond x

c

. A
more detailed description of the relevance of Eq. 1 as a
function of x will require a much more extensive study.
High magnetic fields have played an important role

in the study of QCPs, both as a tuning parameter to
drive systems toward a QCP [3, 5, 21] and in suppress-
ing competing ordered states to reveal a QCP [2]. Here
the role of magnetic field is quite di↵erent; our measure-
ments suggest that B-linear resistivity has the same ori-
gin as T -linear resistivity. This suggests a revision of the
doping-temperature quantum critical phase diagram to
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FIG. 1. Similarity of the functional form of ⇢̃(T ) and
⇢̃(B) in BaFe2(As1�x

P
x

)2. A. The temperature depen-
dence of the normalized resistivity ⇢̃(T ) = ⇢(T )/⇢(273K) is
T -linear at high-T , which appears as sub-linear behavior in
C when plotted against T

2. B. The MR qualitatively looks
B-linear at high-B, particularly at low temperatures. The
similarity with the resistance as a function of temperature is
striking when plotted against B2, as can be seen by compar-
ing C & D. The MR curves were taken at temperatures 4K,
14K, 25K, 31K, 38K and 60K.

our analysis since we are interested in high field and
high temperature e↵ects.[22]. Figure 1 (B) shows the
MR, which exhibits an analogous high field B-linear
dependence. The similarity between the transport as
a function of T and B is even more striking when the
data is plotted as T 2 and B2 on similar vertical scales,
as shown in Fig. 1 (C) and (D). Ideally we would
measure the MR of the normal state over a wide range of
magnetic field at zero (or at least very low) temperature
but superconductivity cuts o↵ the data below the upper
critical field µ0Hc2, restricting us to a narrow range
of the high magnetic field region where B-squared and
B-linear behaviors are di�cult to distinguish. However,
we observe that the MR qualitatively appears more
B-linear at low temperature and more B-squared at
high temperature (a fact that is widely known in these
and other unconventional superconductors [19, 27, 28]).
This gives us an important clue as to how magnetic field
and temperature influence transport - they appear to
compete to set the scale of the scattering.

To analyze the form of this competition, we look for
scaling behavior of the MR as a function of B and T
by plotting ⇢̃/T versus B/T . Note that we remove the
residual resistivity ⇢̃0 so that only the temperature de-
pendent part of the resistivity enters the analysis (see
Supplementary Information for details on the determi-
nation of ⇢̃0). When plotted this way, the data appear
to collapse to a single curve that is well described by a

hyperbolic function of B/T , as shown in Fig. 2 A. We
therefore formulate the following ansatz

~
⌧
=

q
(↵k

B

T )2 + (⌘µ
B

B)2 ⌘ �, (1)

where ↵ and ⌘ relate the scattering rate directly to the
temperature and magnetic field scales respectively [29].
A similar ansatz has been used to describe the tempera-
ture dependence of the optical conductivity in URu2Si2
[30], the magnetic susceptibility of CeCu6�x

Au
x

[29] and
the magnetic fluctuations of La1.86Sr0.14CuO4 [31]. Fur-
thermore, this expression naturally captures the limiting
cases of high field and high temperature. As long as
T � B the scattering rate will be T -linear, and vice
versa. Between these two limits magnetic field and tem-
perature compete to set the scale of the scattering.
In order to understand the degree to which magnetic

field and temperature each influence the scattering, it is
necessary to determine the scale factor, ⌘/↵. The vari-
able ↵ can be determined by the slope of the resistance
versus temperature at zero field. However, because there
is a cross over from T -linear to T -squared behavior as
temperature is lowered, we use the high-T limit of the
resistivity data to determine ↵. Similarly, we look at the
high-B limit to determine ⌘, choosing the lowest tem-
perature curve so that magnetic field is certain to be
the dominant energy scale. Comparing the slope of re-
sistance versus T and B in these regions, we find that
⌘/↵ = 1.01 ± 0.07 (see Supplementary Information for
details). With the value of the scale factor ⌘/↵ deter-
mined, we can plot all of the MR data, together with the
zero field resistance, as a function of � (Fig. 2 (B)). We
observe that for any combination of field and tempera-
ture, the resistance always approaches the same �-linear
dependence, as described by Eq. 1. Remarkably, this
behavior holds for a range of dopings near the critical
point (see Fig. 3). This is not expected in a conventional
metal, where the magnitude and form as a function of T
and B will in general be unrelated, each depending on
di↵erent details of the Fermi surface.
At temperatures below T

c

, we note a deviation from
Eq. 1. Although we cannot account for this in our ansatz,
it seems likely that the deviation is due to the presence
of other energy scales related to superconductivity. At
compositions far from the QCP, we expect this behavior
to break down completely as the materials crossover to
conventional Fermi liquids[4]. This is indeed observed,
as shown in Fig. 4 for compositions well beyond x

c

. A
more detailed description of the relevance of Eq. 1 as a
function of x will require a much more extensive study.
High magnetic fields have played an important role

in the study of QCPs, both as a tuning parameter to
drive systems toward a QCP [3, 5, 21] and in suppress-
ing competing ordered states to reveal a QCP [2]. Here
the role of magnetic field is quite di↵erent; our measure-
ments suggest that B-linear resistivity has the same ori-
gin as T -linear resistivity. This suggests a revision of the
doping-temperature quantum critical phase diagram to
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FIG. 1. Similarity of the functional form of ⇢̃(T ) and
⇢̃(B) in BaFe2(As1�x

P
x

)2. A. The temperature depen-
dence of the normalized resistivity ⇢̃(T ) = ⇢(T )/⇢(273K) is
T -linear at high-T , which appears as sub-linear behavior in
C when plotted against T

2. B. The MR qualitatively looks
B-linear at high-B, particularly at low temperatures. The
similarity with the resistance as a function of temperature is
striking when plotted against B2, as can be seen by compar-
ing C & D. The MR curves were taken at temperatures 4K,
14K, 25K, 31K, 38K and 60K.

our analysis since we are interested in high field and
high temperature e↵ects.[22]. Figure 1 (B) shows the
MR, which exhibits an analogous high field B-linear
dependence. The similarity between the transport as
a function of T and B is even more striking when the
data is plotted as T 2 and B2 on similar vertical scales,
as shown in Fig. 1 (C) and (D). Ideally we would
measure the MR of the normal state over a wide range of
magnetic field at zero (or at least very low) temperature
but superconductivity cuts o↵ the data below the upper
critical field µ0Hc2, restricting us to a narrow range
of the high magnetic field region where B-squared and
B-linear behaviors are di�cult to distinguish. However,
we observe that the MR qualitatively appears more
B-linear at low temperature and more B-squared at
high temperature (a fact that is widely known in these
and other unconventional superconductors [19, 27, 28]).
This gives us an important clue as to how magnetic field
and temperature influence transport - they appear to
compete to set the scale of the scattering.

To analyze the form of this competition, we look for
scaling behavior of the MR as a function of B and T
by plotting ⇢̃/T versus B/T . Note that we remove the
residual resistivity ⇢̃0 so that only the temperature de-
pendent part of the resistivity enters the analysis (see
Supplementary Information for details on the determi-
nation of ⇢̃0). When plotted this way, the data appear
to collapse to a single curve that is well described by a

hyperbolic function of B/T , as shown in Fig. 2 A. We
therefore formulate the following ansatz

~
⌧
=

q
(↵k

B

T )2 + (⌘µ
B

B)2 ⌘ �, (1)

where ↵ and ⌘ relate the scattering rate directly to the
temperature and magnetic field scales respectively [29].
A similar ansatz has been used to describe the tempera-
ture dependence of the optical conductivity in URu2Si2
[30], the magnetic susceptibility of CeCu6�x

Au
x

[29] and
the magnetic fluctuations of La1.86Sr0.14CuO4 [31]. Fur-
thermore, this expression naturally captures the limiting
cases of high field and high temperature. As long as
T � B the scattering rate will be T -linear, and vice
versa. Between these two limits magnetic field and tem-
perature compete to set the scale of the scattering.
In order to understand the degree to which magnetic

field and temperature each influence the scattering, it is
necessary to determine the scale factor, ⌘/↵. The vari-
able ↵ can be determined by the slope of the resistance
versus temperature at zero field. However, because there
is a cross over from T -linear to T -squared behavior as
temperature is lowered, we use the high-T limit of the
resistivity data to determine ↵. Similarly, we look at the
high-B limit to determine ⌘, choosing the lowest tem-
perature curve so that magnetic field is certain to be
the dominant energy scale. Comparing the slope of re-
sistance versus T and B in these regions, we find that
⌘/↵ = 1.01 ± 0.07 (see Supplementary Information for
details). With the value of the scale factor ⌘/↵ deter-
mined, we can plot all of the MR data, together with the
zero field resistance, as a function of � (Fig. 2 (B)). We
observe that for any combination of field and tempera-
ture, the resistance always approaches the same �-linear
dependence, as described by Eq. 1. Remarkably, this
behavior holds for a range of dopings near the critical
point (see Fig. 3). This is not expected in a conventional
metal, where the magnitude and form as a function of T
and B will in general be unrelated, each depending on
di↵erent details of the Fermi surface.
At temperatures below T

c

, we note a deviation from
Eq. 1. Although we cannot account for this in our ansatz,
it seems likely that the deviation is due to the presence
of other energy scales related to superconductivity. At
compositions far from the QCP, we expect this behavior
to break down completely as the materials crossover to
conventional Fermi liquids[4]. This is indeed observed,
as shown in Fig. 4 for compositions well beyond x

c

. A
more detailed description of the relevance of Eq. 1 as a
function of x will require a much more extensive study.
High magnetic fields have played an important role

in the study of QCPs, both as a tuning parameter to
drive systems toward a QCP [3, 5, 21] and in suppress-
ing competing ordered states to reveal a QCP [2]. Here
the role of magnetic field is quite di↵erent; our measure-
ments suggest that B-linear resistivity has the same ori-
gin as T -linear resistivity. This suggests a revision of the
doping-temperature quantum critical phase diagram to

BaFe2As2-xPx       (x=0.31) Hayes et al (2015)
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Fig. 1 - Probing anomalous density fluctuations in the normal state of cuprates. 
(a) Schematic temperature-doping phase diagram of BSCCO. Circles and squares 
represent the points investigated in this work, with filled symbols indicating where a 
complete q-dependence was carried out. The following abbreviations are used: AFI-
Antiferromagnetic Insulator, PG-Pseudogap, SC-Superconductivity, FL-Fermi liquid, 
NFL-Non Fermi liquid, TN-Neel temperature, T*-Pseudogap temperature, Tc- 
superconducting critical temperature, Tcoh-temperature scale of the NFL-FL crossover 
(from Ref. 13) (b) Scattering geometry of the M-EELS experiment. ik  and fk  
represent momenta of the incident and scattered electron, respectively, and q is the in-
plane momentum transfer. (c) Lindhard polarizability of a 2D Fermi liquid with a 
circular Fermi surface. (d) Postulated polarizability of a marginal Fermi liquidError! 
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smooth interpolation. 
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SCES:  What new forms of entanglement are possible?
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Figure 2. Universal scaling plot of Simp for fixed r/R, (a) for R ≤ 102 even,
(b) for R ≤ 101 odd. DMRG results for the J1–J2 chain at Jc

2 for various couplings
J ′

K. The lines marked πξK/(12r) are the FLT prediction: equation (9). (c) The
location of the maximum, (r/ξK)max, of Simp for odd R, plotted versus r/R.

find that Simp(J ′
K, r, R) appears to be a scaling function, depending only on the ratios of

characteristic lengths when r, ξK ≫ 1:

Simp(J
′
K, r, R) = Simp(r/ξK, r/R). (5)

Note that there are actually two different scaling functions for the cases of R even or odd
(or equivalently total spin 0 and 1/2). We have verified this scaling form over a wide range
of parameters using the density matrix renormalization group (DMRG) keeping from 256
to 1024 states (figure 2). In the limit ξK ≪ r we have calculated the universal scaling
function explicitly using conformal field theory (CFT) methods based on Nozières’ local
Fermi liquid theory (FLT) [17, 18].

2. Numerical results

We have determined Simp for a range of values of J ′
K, r and R using the DMRG on the

spin chain model, equation (2). In order to avoid well-known logarithmic corrections due
to a marginally irrelevant (bulk) operator [20] we tune J2 to the critical point Jc

2 ≈ 0.2412,
where the marginal coupling constant vanishes [7]. We then extract SU from the DMRG
data with high precision using a seven-point formula. In figure 2 we show a scaling plot of
Simp for several fixed values of r/R allowing for a determination of ξK(J ′

K) and validating
the scaling form, equation (5).

For odd R, S(0, r, R)−S(1, r−1, R−1) is exactly zero, since the decoupled impurity
at r = 1 has no entanglement with the rest of the chain in the S = 1/2 ground state in
which it is fully polarized. This implies that Simp(0, r, R) = 0 for R odd. On the other
hand, for R even, Simp(0, r, R) is not zero, as shown in figure 3. Thus the presence of the
impurity spin, even when there is no term in the Hamiltonian coupling it to the rest of
the system, alters S. The reason that this is possible is because, with R even and J ′

K = 0,
the ground state is fourfold degenerate, corresponding to the impurity spin and the rest

doi:10.1088/1742-5468/2007/01/L01001 4

Sorenson, Chang, LaFlorencie 
& Affleck, JSM (2007)
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FIG. 1. (a) Kondo spin chain with a spin-1/2 impurity coupled to
its left and right channels by !J ′ and J ′, respectively. For ! = 1, the
impurity is screened by both channels representing the 2CK model,
while for ! ̸= 1, 1CK physics emerges. (b) The impurity entropy Simp

is computed as the difference between the entropy of region A with
and without the impurity. (c) Partitioning of the system for computing
the Schmidt gap.

where σ 0 and σ l
m represent the vector of Pauli matrices

for the impurity spin and the spin at site l in channel m,
respectively, and Nm is the number of spins in chain m, making
the total number of spins N = NL + NR + 1. We choose the
nearest-neighbor coupling J1 to be unity and the next-nearest-
neighbor coupling J2 = J c

2 (with J c
2 = 0.2412J1) so as to

remove marginal coupling effects [34,43]. In this work, we set
the Kondo coupling J ′

L = !J ′ and J ′
R = J ′, with ! = J ′

L/J ′
R

keeping J ′
m < 1. The Hamiltonian (1) has been introduced

in Refs. [11,12] as a representation of the spin sector of the
2CK model when ! = 1. For further justifications, see the
Supplemental Material [44]. For any ! ̸= 1, 1CK physics
emerges. For the case of ! = 1, we also use a periodic chain,
as shown on the left-hand side of Fig. 1(b), by adding the
following terms:

HPBC = HOBC + J1σ
NL

L · σNR

R + J ′J2σ
1
L · σ 1

R

+ J2
(
σNL

L · σNR−1
R + σNL−1

L · σNR

R

)
. (2)

Again, N = NL + NR + 1, and at J ′ = 1 we obtain a uniform
periodic chain which presents significant advantages [44].
In the limit of N → ∞, the two boundary conditions are
equivalent. For HOBC, the parity of NL = NR is crucial [45],
but here we only study NL = NR odd, however, for HPBC it is
the parity of N that matters [45] and we only study N even
(NL = NR ± 1), which makes the parity effects compatible
for HOBC and HPBC.

Impurity entanglement entropy. We first study the channel-
symmetric case ! = 1, with ξ2CK being the only relevant
length scale in the problem. We consider the von Neumann
entropy SA(J ′,x,N) = −Tr ρA log ρA, with ρA the reduced
density matrix of a region A which includes the impurity
spin and x spins on either side of it. N is the total number
of spins in the system, including the impurity. We consider
an even periodic system, using HPBC as shown in Fig. 1(b).
This boundary condition should not affect our results as long
as x ≪ N/2 [44]. Similar to the single-channel case [30,31],

the entanglement entropy behaves very differently in the two
limits x ≪ ξ2CK and x ≫ ξ2CK, with ξ2CK ∼ ea/J ′

growing
exponentially as J ′ → 0 (for some constant a). In what follows
we shall show how to pinpoint the impurity contribution Simp
to the von Neumann entropy. By doing so, we provide a direct
“quantum probe” of the boundary entropy predicted by CFT
[41], with no reference to the thermodynamic entropy.

Let us first consider the N → ∞ limit. When J ′ = 1, we
simply have a uniform periodic chain with region A consisting
of 2x + 1 sites. Then, using the fact that the central charge
c = 1, the entanglement entropy for region A of a periodic
chain is predicted to be, from CFT [46],

SA(J ′ = 1,x,N) = 1
3 ln(2x + 1) + s1 (3)

for a nonuniversal constant s1. For finite but large N even, we
expect the limit of J ′ → 0+, x ≪ N (which is different from
the case where the impurity is absent) to give

SA(J ′ → 0+,x,N) = SA(x,N − 1) + ln 2, (4)

where SA(x,N − 1) represents the entropy of region A when
the impurity is absent but the region still consists of x
spins from each channel (so the total length is N − 1) as
shown on the right-hand side of Fig. 1(b). The additional ln 2
entanglement entropy in Eq. (4) is the impurity contribution
and can be understood by observing that a spin chain with
an even number of sites has a spin zero ground state for any
J ′ > 0 no matter how small. In a valence bond picture of the N
even ground state there will always be an (impurity) valence
bond (IVB) connecting the impurity spin to another spin in
the system, although the IVB becomes very long in the small
J ′ limit [30,31]. Intuitively, this long IVB adds an extra ln 2
to SA(J ′ → 0+,x,N). The interesting case of N odd will be
considered elsewhere [45].

In the absence of an impurity, as long as x ≪ N/2, the
entropy of region A is the sum of the entropy of two equal
blocks at either end of an open chain, as shown in the right-hand
part of Fig. 1(b). In this case the open boundaries induce
an alternating term in the entanglement entropy [47] and we
therefore only focus on the uniform part Su, finding [46,48]

Su
A(x,N − 1) = 2

[
1
6

ln(2x) + s1

2
+ ln g

]
, (5)

where s1 is the same nonuniversal constant appearing in Eq. (3)
and ln g is a universal term arising from a noninteger “ground-
state degeneracy” g [41].

The difference between the two entropies of the two extreme
regimes will be

SA(J ′ = 1,x,N) − Su
A(J ′ → 0+,x,N)

= −2 ln g − ln 2 + O(1/x). (6)

Using the mapping of the spin-chain system onto the 2CK
model, we associate J ′ → 0+ with the weak coupling ultra-
violet fixed point and J ′ → 1 with the infrared fixed point.
Hence we expect

SA(J ′ = 1,x,N) − Su
A(J ′ → 0+,x,N) = ln gIR − ln gUV, (7)

where ln gUV and ln gIR are the boundary entropies for the
ultraviolet and infrared fixed points. Hence, it follows that
the degeneracies of the 2CK model and the open chain must

081106-2
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where σ 0 and σ l
m represent the vector of Pauli matrices

for the impurity spin and the spin at site l in channel m,
respectively, and Nm is the number of spins in chain m, making
the total number of spins N = NL + NR + 1. We choose the
nearest-neighbor coupling J1 to be unity and the next-nearest-
neighbor coupling J2 = J c

2 (with J c
2 = 0.2412J1) so as to

remove marginal coupling effects [34,43]. In this work, we set
the Kondo coupling J ′

L = !J ′ and J ′
R = J ′, with ! = J ′

L/J ′
R

keeping J ′
m < 1. The Hamiltonian (1) has been introduced

in Refs. [11,12] as a representation of the spin sector of the
2CK model when ! = 1. For further justifications, see the
Supplemental Material [44]. For any ! ̸= 1, 1CK physics
emerges. For the case of ! = 1, we also use a periodic chain,
as shown on the left-hand side of Fig. 1(b), by adding the
following terms:

HPBC = HOBC + J1σ
NL

L · σNR

R + J ′J2σ
1
L · σ 1

R

+ J2
(
σNL

L · σNR−1
R + σNL−1

L · σNR

R

)
. (2)

Again, N = NL + NR + 1, and at J ′ = 1 we obtain a uniform
periodic chain which presents significant advantages [44].
In the limit of N → ∞, the two boundary conditions are
equivalent. For HOBC, the parity of NL = NR is crucial [45],
but here we only study NL = NR odd, however, for HPBC it is
the parity of N that matters [45] and we only study N even
(NL = NR ± 1), which makes the parity effects compatible
for HOBC and HPBC.

Impurity entanglement entropy. We first study the channel-
symmetric case ! = 1, with ξ2CK being the only relevant
length scale in the problem. We consider the von Neumann
entropy SA(J ′,x,N) = −Tr ρA log ρA, with ρA the reduced
density matrix of a region A which includes the impurity
spin and x spins on either side of it. N is the total number
of spins in the system, including the impurity. We consider
an even periodic system, using HPBC as shown in Fig. 1(b).
This boundary condition should not affect our results as long
as x ≪ N/2 [44]. Similar to the single-channel case [30,31],

the entanglement entropy behaves very differently in the two
limits x ≪ ξ2CK and x ≫ ξ2CK, with ξ2CK ∼ ea/J ′

growing
exponentially as J ′ → 0 (for some constant a). In what follows
we shall show how to pinpoint the impurity contribution Simp
to the von Neumann entropy. By doing so, we provide a direct
“quantum probe” of the boundary entropy predicted by CFT
[41], with no reference to the thermodynamic entropy.

Let us first consider the N → ∞ limit. When J ′ = 1, we
simply have a uniform periodic chain with region A consisting
of 2x + 1 sites. Then, using the fact that the central charge
c = 1, the entanglement entropy for region A of a periodic
chain is predicted to be, from CFT [46],

SA(J ′ = 1,x,N) = 1
3 ln(2x + 1) + s1 (3)

for a nonuniversal constant s1. For finite but large N even, we
expect the limit of J ′ → 0+, x ≪ N (which is different from
the case where the impurity is absent) to give

SA(J ′ → 0+,x,N) = SA(x,N − 1) + ln 2, (4)

where SA(x,N − 1) represents the entropy of region A when
the impurity is absent but the region still consists of x
spins from each channel (so the total length is N − 1) as
shown on the right-hand side of Fig. 1(b). The additional ln 2
entanglement entropy in Eq. (4) is the impurity contribution
and can be understood by observing that a spin chain with
an even number of sites has a spin zero ground state for any
J ′ > 0 no matter how small. In a valence bond picture of the N
even ground state there will always be an (impurity) valence
bond (IVB) connecting the impurity spin to another spin in
the system, although the IVB becomes very long in the small
J ′ limit [30,31]. Intuitively, this long IVB adds an extra ln 2
to SA(J ′ → 0+,x,N). The interesting case of N odd will be
considered elsewhere [45].

In the absence of an impurity, as long as x ≪ N/2, the
entropy of region A is the sum of the entropy of two equal
blocks at either end of an open chain, as shown in the right-hand
part of Fig. 1(b). In this case the open boundaries induce
an alternating term in the entanglement entropy [47] and we
therefore only focus on the uniform part Su, finding [46,48]

Su
A(x,N − 1) = 2

[
1
6

ln(2x) + s1

2
+ ln g

]
, (5)

where s1 is the same nonuniversal constant appearing in Eq. (3)
and ln g is a universal term arising from a noninteger “ground-
state degeneracy” g [41].

The difference between the two entropies of the two extreme
regimes will be

SA(J ′ = 1,x,N) − Su
A(J ′ → 0+,x,N)

= −2 ln g − ln 2 + O(1/x). (6)

Using the mapping of the spin-chain system onto the 2CK
model, we associate J ′ → 0+ with the weak coupling ultra-
violet fixed point and J ′ → 1 with the infrared fixed point.
Hence we expect

SA(J ′ = 1,x,N) − Su
A(J ′ → 0+,x,N) = ln gIR − ln gUV, (7)

where ln gUV and ln gIR are the boundary entropies for the
ultraviolet and infrared fixed points. Hence, it follows that
the degeneracies of the 2CK model and the open chain must
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liquids and topologically-ordered states. This is a new language for condensed matter physics (and
in fact, for all quantum physics) that makes everything much more visual and which brings new
intuitions, ideas and results.

Figure 2: (color online) Two examples of tensor network diagrams: (a) Matrix Product State
(MPS) for 4 sites with open boundary conditions; (b) Projected Entangled Pair State (PEPS) for
a 3⇥ 3 lattice with open boundary conditions.

3.3 Entanglement induces geometry

Imagine that you are given a quantum many-body wave-function. Specifying its coe�cients in
a given local basis does not give any intuition about the structure of the entanglement between
its constituents. It is expected that this structure is di↵erent depending on the dimensionality of
the system: this should be di↵erent for 1d systems, 2d systems, and so on. But it should also
depend on more subtle issues like the criticality of the state and its correlation length. Yet, naive
representations of quantum states do not possess any explicit information about these properties.
It is desirable, thus, to find a way of representing quantum sates where this information is explicit
and easily accessible.

As we shall see, a TN has this information directly available in its description in terms of a
network of quantum correlations. In a way, we can think of TN states as quantum states given in
some entanglement representation. Di↵erent representations are better suited for di↵erent types
of states (1d, 2d, critical...), and the network of correlations makes explicit the e↵ective lattice
geometry in which the state actually lives. We will be more precise with this in Sec.4.2. At this
level this is just a nice property. But in fact, by pushing this idea to the limit and turning it
around, a number of works have proposed that geometry and curvature (and hence gravity) could
emerge naturally from the pattern of entanglement present in quantum states [51]. Here we will
not discuss further this fascinating idea, but let us simply mention that it becomes apparent that
the language of TN is, precisely, the correct one to pursue this kind of connection.

3.4 Hilbert space is far too large

This is, probably, the main reason why TNs are a key description of quantum many-body states
of Nature. For a system of e.g. N spins 1/2, the dimension of the Hilbert space is 2N , which
is exponentially large in the number of particles. Therefore, representing a quantum state of the
many-body system just by giving the coe�cients of the wave function in some local basis is an
ine�cient representation. The Hilbert space of a quantum many-body system is a really big place
with an incredibly large number of quantum states. In order to give a quantitative idea, let us
put some numbers: if N ⇠ 1023 (of the order of the Avogadro number) then the number of basis

6

PEPS (2D)
projected entangled-pair state
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local observables. There is, however, a clever linear scheme
that only requires iterative update of a set of effective opera-
tors. Therefore the computational complexity of calculating !
scales as ND3 similar to just evaluating the energy !""H""#.
As a side product, this leads to efficient algorithms for cal-
culating excited eigenstates of Hamiltonians close to a fixed
energy E by minimizing !""$H−E%2""#. Moreover, it can be
used to estimate errors on eigenenergies as it can be shown
that there exists an exact eigenvalue Eex within an interval
around E specified by !=&!""$H−E%2""#.

For quantum impurity systems with sharp features such as
the Kondo model discussed below, it should be noted, how-
ever, that the broadening # may have to be chosen extremely
small. In this case, the minimization of N in Eq. $6% can
become increasingly ill conditioned as #→0 $see Appendix%,
with conditioning deteriorating quadratically in #. If one di-
rectly solves $ /$!P'n("'!%"$H−&− i#%"%#− !%"c†""#()0 by a
nonhermitian equation solver such as the biconjugate gradi-
ent method, conditioning deteriorates only linearly. This is
the strategy that has been followed to obtain the results re-
ported below.

IV. APPLICATION TO KONDO MODEL

Let us now illustrate above strategies by applying them to
the Kondo model. Since the Hamiltonian in Eq. $1% couples ↑
and ↓ band electrons only via the impurity spin, it is possible
$see also Refs. 5 and 17% to “unfold” the semi-infinite Wilson
chain into an infinite one, with ↑ band states to the left of the
impurity and ↓ states to the right, and hopping amplitudes
decreasing in both directions as '−"n"/2. Since the left and
right end regions of the chain, which describe the model’s
low-energy properties, are far apart and hence interact only
weakly with each other 'analyzed quantitatively in terms of
mutual information in Fig. 1$b%(, the effective Hamiltonian
for these low energies will be of the form H↑

eff
! 11↓+11↑

! H↓
eff. Due to the symmetry of the Kondo coupling, H↑

eff and
H↓

eff have the same eigenspectrum for n(1, such that the
fixed point spectrum is already well reflected by analyzing
either one, as illustrated in Fig. 1$a%. Note that for a direct
comparison with NRG, the spin chains can be recombined
within VMPS.17 The resulting standard energy flow diagram
presented in panel $a% for VMPS and NRG, respectively,
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=0.16 and '=2 if not specified otherwise. $a% Energy level flow of the Kondo model as a function of site index n obtained from H)

eff of a
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IM$n%)S$n↑%+S$n↓%−S$n↑ ,n↓%. Here S is the entropy of the reduced density matrix of the groundstate with respect to the indicated subspace
$Ref. 17% $solid for even, dashed for odd sites n%. $c% Bond entropy S along the unfolded Wilson chain, where S is the usual von Neumann
entropy of the VMPS reduced density matrix when going from site n to n+1, plotted for even and odd iterations, respectively. $d%
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Inset shows zoom into peak at &=0. The significantly smaller '=1.2 applicable for VMPS $discretization intervals are indicated by vertical
lines% shows clearly improved agreement with the Friedel sum rule T$0%*2 /2=1. $e% Comparison of ground-state energy of the Kondo
Hamiltonian Eq. $1% for fixed chain length relative to the extrapolated energy for D→+ for VMPS and NRG as function of the dimension
D of states kept.
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in fact, for all quantum physics) that makes everything much more visual and which brings new
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Figure 2: (color online) Two examples of tensor network diagrams: (a) Matrix Product State
(MPS) for 4 sites with open boundary conditions; (b) Projected Entangled Pair State (PEPS) for
a 3⇥ 3 lattice with open boundary conditions.

3.3 Entanglement induces geometry

Imagine that you are given a quantum many-body wave-function. Specifying its coe�cients in
a given local basis does not give any intuition about the structure of the entanglement between
its constituents. It is expected that this structure is di↵erent depending on the dimensionality of
the system: this should be di↵erent for 1d systems, 2d systems, and so on. But it should also
depend on more subtle issues like the criticality of the state and its correlation length. Yet, naive
representations of quantum states do not possess any explicit information about these properties.
It is desirable, thus, to find a way of representing quantum sates where this information is explicit
and easily accessible.

As we shall see, a TN has this information directly available in its description in terms of a
network of quantum correlations. In a way, we can think of TN states as quantum states given in
some entanglement representation. Di↵erent representations are better suited for di↵erent types
of states (1d, 2d, critical...), and the network of correlations makes explicit the e↵ective lattice
geometry in which the state actually lives. We will be more precise with this in Sec.4.2. At this
level this is just a nice property. But in fact, by pushing this idea to the limit and turning it
around, a number of works have proposed that geometry and curvature (and hence gravity) could
emerge naturally from the pattern of entanglement present in quantum states [51]. Here we will
not discuss further this fascinating idea, but let us simply mention that it becomes apparent that
the language of TN is, precisely, the correct one to pursue this kind of connection.

3.4 Hilbert space is far too large

This is, probably, the main reason why TNs are a key description of quantum many-body states
of Nature. For a system of e.g. N spins 1/2, the dimension of the Hilbert space is 2N , which
is exponentially large in the number of particles. Therefore, representing a quantum state of the
many-body system just by giving the coe�cients of the wave function in some local basis is an
ine�cient representation. The Hilbert space of a quantum many-body system is a really big place
with an incredibly large number of quantum states. In order to give a quantitative idea, let us
put some numbers: if N ⇠ 1023 (of the order of the Avogadro number) then the number of basis
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depend on more subtle issues like the criticality of the state and its correlation length. Yet, naive
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It is desirable, thus, to find a way of representing quantum sates where this information is explicit
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the language of TN is, precisely, the correct one to pursue this kind of connection.
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of states (1d, 2d, critical...), and the network of correlations makes explicit the e↵ective lattice
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the language of TN is, precisely, the correct one to pursue this kind of connection.

3.4 Hilbert space is far too large

This is, probably, the main reason why TNs are a key description of quantum many-body states
of Nature. For a system of e.g. N spins 1/2, the dimension of the Hilbert space is 2N , which
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put some numbers: if N ⇠ 1023 (of the order of the Avogadro number) then the number of basis
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!Fig. 12.5 Dependence of Free energy on order parameter for (a) an Ising order parameter
ψ = ψ1, showing two degenerate minima and (b) complex order parameter
ψ = ψ1 + iψ2 = |ψ|eiφ, where the the Landau free energy forms a “Mexican Hat
Potential” in which the free energy minimum forms a rim of degenerate states with
energy that is independent of the phase φ of the uniform order parameter.

is an essential component of broken continuous symmetry. In superfluids, the emergence of a well-defined
phase associated with the order parameter is intimately related to persistent currents, or superflow. We shall
shortly see that when we “twist” the phase, a superflow develops.

j⃗ ∝ ∇⃗φ.

To describe this rigidity, we need to take the next step, introducing a term into energy functional that keeps
track of the energy cost of a non-uniform order parameter. This leads us onto Landau Ginzburg theory.

12.3 Ginzburg Landau theory I: Ising order

Landau theory describes the energy cost of a uniform order parameter: a more general theory needs to ac-
count for inhomogenious order parameters in which the amplitude varies or the direction of the order param-
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The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu2Si2.
In this paper we discuss its nature and the strong constraints it places on current theories of the
hidden order. In the hastatic theory such anisotropic quasiparticles are naturally described by
resonant scattering between half-integer spin conduction electrons and integer-spin Ising moments.
The hybridization that mixes states of di↵erent Kramers parity is spinorial; its role as an symmetry-
breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden
development at the hidden order transition. We discuss the microscopic origin of hastatic order,
identifying it as a fractionalization of three body bound-states into integer spin fermions and half-
integer spin bosons. After reviewing key features of hastatic order and their broader implications,
we discuss our predictions for experiment and recent measurements. We end with challenges both
for hastatic order and more generally for any theory of the hidden order state in URu2Si2 .

PACS numbers:

I. INTRODUCTION

We begin by noting that two key developments in
heavy fermion physics that relate to the hidden order
problem in URu2Si2 were both published in Philosoph-
ical Magazine. Forty years ago, Neville Mott1 pointed
out that the development of coherence in heavy electron
systems should be understood as a hybridization of f-
electrons connected with the Kondo e↵ect. Twenty five
years later, Okhuni et al.2 discovered that in the hidden
order phase, the mobile carriers are Ising quasiparticles.
This paper discusses how these two phenomena - the de-
velopment of an emergent hybridization and the forma-
tion of pure Ising quasiparticles - are inextricably linked
with the hidden order in URu2Si2 .

There is still no consensus on the nature of the “hid-
den order” phase in URu2Si2 despite several decades
of active theoretical and experimental research.3–5 At
THO = 17.5K there are sharp features in thermodynamic
quantities and a sizable ordering entropy (S > 1

3R ln 2);
however there is no observed charge order, and spin or-
dering in the form of antiferromagnetism occurs only at
finite pressures.3–8 At first sight, it seems straightforward
to link hidden order to the formation of a “heavy density
wave” within a pre-formed heavy electron fluid. Since
there is no observed magnetic moment or charge density
observed in the hidden order (HO) phase, such a density
wave must necessarily involve a higher order multipole of
the charge or spin degrees of freedom and various theo-
ries of this sort have indeed been advanced.9–31 In each
of these scenarios, the heavy electrons develop coherence
via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
account for the emergence of heavy Ising quasiparticles,
a signature feature of URu2Si2 that has been probed by
two distinct experiments.2,32–34 The essential point here

is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41

this is to be contrasted with the usual situation in heavy
fermion materials where it is simply a crossover.

FIG. 1: Schematic contrasting the multipolar and spinorial
theories of Hidden order. (a) in a multipolar scenario, the
heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
a consequence of two spinorial scattering events. In this way,
the Hastatic spinor order parameter can be loosely regarded
as the square root of a multipole.

Here we argue that the elusive nature of the “hidden
order” in URu2Si2 is not due to its intrinsic complexity
but rather that it results from a fundamentally new type
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and in fact, the Kondo Hamiltonian can be obtained from
it in the limit D5U þ !d; j!dj, with D ¼ pRV 2 the width of
the resonance [29].

As first discussed by Langreth [34], the T-matrix for the
Anderson model can be related to the d-level’s Green’s
function as [11,29]

ImfTsðoÞg ¼ pV 2Rd;tsðoÞ,

RefTsðoÞg ¼ % t V 2

Z
do0

Rd;tsðoÞ
o% o0

. ð16Þ

Here t ¼ sgno, and Rd;sðoÞ is the spectral function of the
d-Fermion, which we have computed using NRG [24].

The full frequency-dependence of the various scattering
cross-sections obtained for the asymmetrical Anderson
model with interaction strength U=D ¼ 5:1 is shown in
Fig. 4. At this value of U one can already observe the
Hubbard side-peaks in the total scattering cross section at
energies o & !d and o & U þ !d, and a distinct Kondo
resonance appears at o & 0 too. The scattering rates in the
region o & 0 are strikingly similar to the ones we obtained
for the Kondo model, and remarkably, both the quasi-
linear regime of sinel and the plateau are already present for
these moderate values of U=D. This is not very surprising
since, as stated before, the Kondo model is just the effective
model of the Anderson model in the limit of large U=D and
o5U . For even larger values of U=D and intermediate
energies, TK5o5U , the elastic and inelastic contribu-
tions follow very nicely the asymptotic behavior found for
the Kondo model, and scale as '1=ln4ðo=TKÞ and
'1=ln2ðo=TKÞ, respectively. New features compared to
the Kondo model are the Hubbard peaks that correspond
almost entirely to inelastic scattering.

4. Inelastic scattering in the two-channel Kondo model

So far, we considered scattering from Fermi liquid
models only. Let us now discuss the two-channel Kondo

model, the prototype of all non-Fermi liquid impurity
models [35]. This is defined by a Hamiltonian similar to
Eq. (10) excepting that now there is two ‘channels’ of
conduction electrons, a ¼ 1; 2 that are coupled to the
impurity spin with couplings Ja,

H ¼
X

a¼1;2

X

p;s
xp ayps;aaps;a þ

X

a¼1;2

Ja

2
~S

(
X

p;p0
ss0

ayp;a~sss0ap0 ;a. ð17Þ

In the channel-symmetric case, J1 ¼ J2 the two conduction
electron channels compete to screen the impurity spin
independently, which is therefore never completely
screened. This competition leads to the formation of a
strongly correlated state which cannot be described by
Nozières’ Fermi liquid theory, and is characterized by a
non-zero residual entropy, the logarithmic divergence of
the impurity susceptibility, and the power law behavior of
transport properties with fractional exponents [35]. Any
infinitesimal asymmetry in the couplings D ¼ ðJ1 % J2Þ=
ðJ1 þ J2Þ leads to the appearance of another low-tempera-
ture energy scale T) / D2 TK= at which the system crosses
over to a Fermi liquid behavior: Electrons being more
strongly coupled to the impurity form a usual Kondo
singlet with the impurity spin, while the other electron
channel becomes completely decoupled from the spin.
For J1 ¼ J2, no Fermi-liquid relations are available.

There exists, however, an exact theorem due to Maldacena
and Ludwig, according to which, at the two-channel
Kondo fixed point, the single-particle elements of the
S-matrix identically vanish for o! 0: s2CKðo! 0Þ ¼ 0
[36]. As a consequence, t2CKðo ¼ 0Þ ¼ %i: This relation
leads to the surprising result that exactly half of the
scattering is inelastic at the Fermi energy, while the other
half of it is inelastic:

s2CKinel ðo ¼ 0Þ ¼ s2CKel ðo ¼ 0Þ ¼ s2CKtot ðo ¼ 0Þ=2. (18)

This counter-intuitive result can be understood as follows:
The vanishing of the single particle S-matrix indicates that
an incoming electron cannot be detected as one electron
after the scattering event, and it ‘‘decays’’ into infinitely
many electron–hole pairs. To get such a ‘‘decay’’, however,
the scattering process must have an elastic part which
interferes destructively with the unscattered direct wave,
and cancels exactly the outgoing single particle amplitude
in the s-channel.
The evolution of sðoÞ and the inelastic scattering rates

for the two-channel Kondo model are shown in Fig. 5 as a
function of the energy of the incoming particle. In the
channel-symmetric case inelastic processes are allowed
even at o ¼ 0, which is a clear signature of the non-Fermi
liquid behavior. The non-Fermi liquid nature is also
reflected in the '

ffiffiffiffi
o
p

singularity of the scattering cross
sections at o ¼ 0.
For D40 the total scattering rate approaches the unitary

limit in channel ‘‘1’’ below the Fermi liquid scale T), while
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asymmetric Anderson model. The low-energy part of the curves is very
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(~�↵� · ~S j) �� ! V� f↵(0)emerges, as shown in Fig. 1(b) and as pointed out in
Ref. [12]. In the present case, the F-channel phase ismasked
by the AF-spin phase around half-filling because of the
lower transition temperature. In real systems, however,
one may encounter possible suppression of the AF-spin
order caused, e.g., by geometrical frustration, or substantial
next-nearest neighbor hopping. In such a case, the
F-channel order may be stabilized. Because of its unique
and interesting property to be described below, this Letter
concentrates mainly on the F-channel phase from now on.

Let us define the spin and channel moments:

mspin ¼
X

!

hn!" " n!#i; (2)

mchan ¼
X

"

hn1" " n2"i; (3)

where n!" is the local number operator of conduction
electrons with channel ! and spin ". The lower panels of
Fig. 1 show calculated results of the moments. The spin
moment at nc ¼ 2 in the AF-spin phase becomes maxi-
mum with the highest transition temperature Tspin, and
gradually decreases away from half-filling. In the case
of the F-channel phase, on the contrary, the channel mo-
ment mchan becomes finite only away from half-filling, and
remains tiny. Even though the transition temperature Tchan

takes the maximum at nc ¼ 2, we observe mchan ¼ 0.
Hence, the channel moment is not a proper order
parameter.

Let us identify the proper order parameter in the F-
channel phase. It has been found that the double occupancy
hn!"n!#i in the ordered phase becomes different between
! ¼ 1 and ! ¼ 2 [12]. We propose, however, that the
fundamental order parameter involves the localized spin,
and hence the Kondo effect. The small difference in double
occupation is a consequence of the fundamental order
parameter. We shall demonstrate that the proper order para-
meter leads to identifying an odd-frequency order. As
shown in Fig. 2(a), the local spin correlations hSi # sci!i

become different below Tchan. Namely each localized
spin tends to form the Kondo singlet selectively with one
of the two conduction bands. The order parameter is hence
given by

! $ hSi # ðsci1 " sci2Þi; (4)

which is independent of site index i. Since ! grows
continuously below the transition temperature, the phase
transition is of second order. Note that the order parameter
! is a composite quantity, and cannot be described by a
one-body mean field such as hSii or hsci1 " sci2i.
A real-space image of the electronic state is illustrated in

Fig. 2(b). For channel ! ¼ 1, the effective Kondo coupling
tends to zero, while for ! ¼ 2 the coupling tends to infin-
ity. Thus the F-channel phase is the mixture of weak- and
strong-coupling limits depending on channels. This state
therefore cannot be accessible by perturbation theory from
either limit.
The peculiar character of the F-channel phase appears

also in the single-particle spectrum. We have derived
the single-particle spectrum explicitly from the imaginary
part of the Green function. Since the self-energy is local in
the DMFT, the wave vector enters only through "k. We
introduce the parameter # defined by "k ¼ "D cos#, and
visualize the spectrum as if the system were in one dimen-
sion. Accordingly the single-particle spectrum is written
as Að#; !Þ. Figures 2(c1) and 2(c2) show the spectra of
conduction electrons with ! ¼ 1 and ! ¼ 2, respectively.
The spectrum of the channel ! ¼ 1 displays the Fermi-
liquid behavior. Here the mass enhancement factor is
estimated asm'=m( 1:95 from analysis of the self-energy.
As shown in Fig. 2(c2), on the contrary, another channel
! ¼ 2 acquires the insulating character. The spectrum is
almost the same as that of the ordinary Kondo insulator.
Thus, the F-channel phase consists of a Fermi liquid with
! ¼ 1 plus Kondo insulator with ! ¼ 2. Hence the phase

FIG. 2 (color online). (a) Temperature dependence of local
correlation functions, and (b) schematic picture of the F-channel
phase. The arrows on the thin lines show conduction electrons,
and the shaded ovals show the Kondo singlets centered on each
lattice site. (c) Single-particle spectra of conduction electrons
with ! ¼ 1 and 2 in this phase are shown in (c1) and (c2),
respectively.

FIG. 1 (color online). Phase diagram of the two-channel KL
near half-filling for (a) AF-spin and (b) F-channel ordered
phases. In (b), we neglect the AF-spin order for all nc. The
lower panels show spin and channel moments close to the ground
state, as defined by Eqs. (2) and (3). The full moment is
normalized to unity.
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The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu2Si2.
In this paper we discuss its nature and the strong constraints it places on current theories of the
hidden order. In the hastatic theory such anisotropic quasiparticles are naturally described by
resonant scattering between half-integer spin conduction electrons and integer-spin Ising moments.
The hybridization that mixes states of di↵erent Kramers parity is spinorial; its role as an symmetry-
breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden
development at the hidden order transition. We discuss the microscopic origin of hastatic order,
identifying it as a fractionalization of three body bound-states into integer spin fermions and half-
integer spin bosons. After reviewing key features of hastatic order and their broader implications,
we discuss our predictions for experiment and recent measurements. We end with challenges both
for hastatic order and more generally for any theory of the hidden order state in URu2Si2 .

PACS numbers:

I. INTRODUCTION

We begin by noting that two key developments in
heavy fermion physics that relate to the hidden order
problem in URu2Si2 were both published in Philosoph-
ical Magazine. Forty years ago, Neville Mott1 pointed
out that the development of coherence in heavy electron
systems should be understood as a hybridization of f-
electrons connected with the Kondo e↵ect. Twenty five
years later, Okhuni et al.2 discovered that in the hidden
order phase, the mobile carriers are Ising quasiparticles.
This paper discusses how these two phenomena - the de-
velopment of an emergent hybridization and the forma-
tion of pure Ising quasiparticles - are inextricably linked
with the hidden order in URu2Si2 .

There is still no consensus on the nature of the “hid-
den order” phase in URu2Si2 despite several decades
of active theoretical and experimental research.3–5 At
THO = 17.5K there are sharp features in thermodynamic
quantities and a sizable ordering entropy (S > 1

3R ln 2);
however there is no observed charge order, and spin or-
dering in the form of antiferromagnetism occurs only at
finite pressures.3–8 At first sight, it seems straightforward
to link hidden order to the formation of a “heavy density
wave” within a pre-formed heavy electron fluid. Since
there is no observed magnetic moment or charge density
observed in the hidden order (HO) phase, such a density
wave must necessarily involve a higher order multipole of
the charge or spin degrees of freedom and various theo-
ries of this sort have indeed been advanced.9–31 In each
of these scenarios, the heavy electrons develop coherence
via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density
wave. However such multipolar order can not naturally
account for the emergence of heavy Ising quasiparticles,
a signature feature of URu2Si2 that has been probed by
two distinct experiments.2,32–34 The essential point here

is that conventional quasiparticles have half-integer spin
and are magnetically isotropic; they thus lack the essen-
tial Ising protection required by observation. In addition
optical and tunnelling probes35–39 indicate that the hy-
bridization in URu2Si2 develops abruptly at THO and is
thus associated with a global broken symmetry;22,26,40,41

this is to be contrasted with the usual situation in heavy
fermion materials where it is simply a crossover.

FIG. 1: Schematic contrasting the multipolar and spinorial
theories of Hidden order. (a) in a multipolar scenario, the
heavy electrons Bragg di↵ract o↵ a staggered spin or charge
multipole (b) in the hastatic scenario, the development of
a spinor hybridization opens up resonant scattering with an
integer spin state of the ion. The multipole is generated as
a consequence of two spinorial scattering events. In this way,
the Hastatic spinor order parameter can be loosely regarded
as the square root of a multipole.

Here we argue that the elusive nature of the “hidden
order” in URu2Si2 is not due to its intrinsic complexity
but rather that it results from a fundamentally new type

Chandra, Coleman, Flint, Nature (2013)

See eg:

J=3 Kiss & Fazekas, Phys Rev B, (2005)
J=4 Kotliar & Haule, Nat Phys, (2009)
J=5 Ikeda et al, Nat. Phys (2012)
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a ‘‘spin zero’’ each time g!effðm!=me) is an odd integer. A
total of 16 spin zeros are observed on rotating the direction
of the field from H k ½100$ to H k ½001$ [24].

The surprising result here is that, by making rather
simple assumptions [implicit in Eqs. (1) and (2)], the
estimates for g!eff (shown in Fig. 2) made by using two
independent experimental methods are quantitatively con-
sistent over a broad angular range. The comparability of
these estimates both establishes the twofold degeneracy of
the quasiparticles and shows that the superconducting
critical field of URu2Si2 corresponds to that of a Pauli-
limited paired fermion condensate [25] for all orientations
of the magnetic field—the exception being a narrow range
of angles within %10& of the [100] axis in Fig. 2 (likely
associated with the dominant role of diamagnetic screening
currents once g!eff is strongly suppressed [23]).

The field orientation dependence of g!eff in Fig. 2 is
notably different from the usual isotropic case of g! ' 2
for band electrons (dotted line), indicating the spin suscep-
tibility of the quasiparticles in URu2Si2 to differ along the
two distinct crystalline axes. Since the Zeeman splitting of

the quasiparticles is given by the projection M ( Ĥ of the

spin magnetization M ¼ !
"2

B

2 ðg2a cos#; 0; g2c sin#ÞH along
H ¼ Hðcos#; 0; sin#Þ [where ! is the electronic density

of states], settingM ( Ĥ ¼ !
"Bg

!
eff

2 H defines an effective g
factor

g!eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2csin

2#þ g2acos
2#

q
(3)

that (in the case of a strong anisotropy) traces a figure ‘‘8’’
in polar coordinates. A fit to Eq. (3) in Fig. 2 (solid line)
yields gc ¼ 2:65, 0:05 and ga ¼ 0:0, 0:1, implying a
large anisotropy in the spin susceptibility $c

$a
¼ ðgcgaÞ

2.

To obtain a lower bound for the anisotropy, we plot geff
(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [24] versus sin# (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for different
values of $c

$a
¼ ðgcgaÞ

2 made by using Eq. (3). The observation

of a spin zero in Fig. 1 at angles as small as 3& implies a
lower bound $c

$a
* 1000. A smaller anisotropy would be

expected to lead to the observation of fewer spin zeros and
nonlinearity in the plot with an upturn in geff at small
values of sin# (see Ref. [31] and Fig. 4).
A large anisotropy in the magnetic susceptibility is the

behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal lat-
tice gives rise to an Ising anisotropy. Kondo coupling
provides one possible means by which such an anisotropy
can be transferred to itinerant electrons [15]. In the case of
an isolated magnetic impurity (i.e., an isolated magnetic
moment), Kondo singlets can be considered the result of an
antiferromagnetic coupling between the impurity and

FIG. 1 (color online). Data used for determining the effective g
factor. (a) shows the upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the projected onset of
resistivity at' 30 mK (similar to the method adopted by Ohkuni
et al. [24]). An example trace is shown in the inset. (b) shows a
schematic representation of the angle-dependent magnetic quan-
tum oscillations adapted from Fig. 18 of Ref. [24], with the
indices of the spin zeros indicated. The plot pertains to the
dominant % frequency [24], which can be followed uninterrupted
over the entire angular range. In order to show the oscillatory
behavior, the amplitude here is multiplied by -1 on crossing
each spin zero.

FIG. 2 (color online). A polar plot of the field orientation
dependence of g!eff . The values are estimated by using Eqs. (1)
and (2) represented by open and filled circles, respectively. Also
shown is a fit (solid line) of Eq. (3) to g!eff and the isotropic g

! '
2 (dotted line) expected for conventional band electrons. In
Fig. 1(a), we assume Hc2 ' Hp. In extracting g!eff from the
index assignments of g!effðm!=meffÞ in Fig. 1(b), the weakly
angle-dependent m! is interpolated from the measured values
in Ref. [24].
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a ‘‘spin zero’’ each time g!effðm!=me) is an odd integer. A
total of 16 spin zeros are observed on rotating the direction
of the field from H k ½100$ to H k ½001$ [24].

The surprising result here is that, by making rather
simple assumptions [implicit in Eqs. (1) and (2)], the
estimates for g!eff (shown in Fig. 2) made by using two
independent experimental methods are quantitatively con-
sistent over a broad angular range. The comparability of
these estimates both establishes the twofold degeneracy of
the quasiparticles and shows that the superconducting
critical field of URu2Si2 corresponds to that of a Pauli-
limited paired fermion condensate [25] for all orientations
of the magnetic field—the exception being a narrow range
of angles within %10& of the [100] axis in Fig. 2 (likely
associated with the dominant role of diamagnetic screening
currents once g!eff is strongly suppressed [23]).

The field orientation dependence of g!eff in Fig. 2 is
notably different from the usual isotropic case of g! ' 2
for band electrons (dotted line), indicating the spin suscep-
tibility of the quasiparticles in URu2Si2 to differ along the
two distinct crystalline axes. Since the Zeeman splitting of
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that (in the case of a strong anisotropy) traces a figure ‘‘8’’
in polar coordinates. A fit to Eq. (3) in Fig. 2 (solid line)
yields gc ¼ 2:65, 0:05 and ga ¼ 0:0, 0:1, implying a
large anisotropy in the spin susceptibility $c

$a
¼ ðgcgaÞ

2.

To obtain a lower bound for the anisotropy, we plot geff
(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [24] versus sin# (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for different
values of $c
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¼ ðgcgaÞ

2 made by using Eq. (3). The observation

of a spin zero in Fig. 1 at angles as small as 3& implies a
lower bound $c

$a
* 1000. A smaller anisotropy would be

expected to lead to the observation of fewer spin zeros and
nonlinearity in the plot with an upturn in geff at small
values of sin# (see Ref. [31] and Fig. 4).
A large anisotropy in the magnetic susceptibility is the

behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal lat-
tice gives rise to an Ising anisotropy. Kondo coupling
provides one possible means by which such an anisotropy
can be transferred to itinerant electrons [15]. In the case of
an isolated magnetic impurity (i.e., an isolated magnetic
moment), Kondo singlets can be considered the result of an
antiferromagnetic coupling between the impurity and

FIG. 1 (color online). Data used for determining the effective g
factor. (a) shows the upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the projected onset of
resistivity at' 30 mK (similar to the method adopted by Ohkuni
et al. [24]). An example trace is shown in the inset. (b) shows a
schematic representation of the angle-dependent magnetic quan-
tum oscillations adapted from Fig. 18 of Ref. [24], with the
indices of the spin zeros indicated. The plot pertains to the
dominant % frequency [24], which can be followed uninterrupted
over the entire angular range. In order to show the oscillatory
behavior, the amplitude here is multiplied by -1 on crossing
each spin zero.

FIG. 2 (color online). A polar plot of the field orientation
dependence of g!eff . The values are estimated by using Eqs. (1)
and (2) represented by open and filled circles, respectively. Also
shown is a fit (solid line) of Eq. (3) to g!eff and the isotropic g

! '
2 (dotted line) expected for conventional band electrons. In
Fig. 1(a), we assume Hc2 ' Hp. In extracting g!eff from the
index assignments of g!effðm!=meffÞ in Fig. 1(b), the weakly
angle-dependent m! is interpolated from the measured values
in Ref. [24].
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See: Flint, Dzero, PC, Nat Phys. (2008)

NpPd5

dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, &dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and &dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and &dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of &dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:
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[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m
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a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
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slope of Hc2 at Tc, &dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and &dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and &dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of &dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
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a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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dependence. It is noticed that the resistivity decreases
linearly below 10 K, as shown in the inset of Fig. 2(a),
indicating a non-Fermi liquid character. At Tc ¼ 5:0 K, the
resistivity shows a sharp drop and becomes zero, indicating
the superconducting transition.

Superconductivity is stable against the magnetic field, as
shown in Fig. 2(b), and is found to be highly anisotropic
with respect to the direction of the magnetic field. The
superconducting transition is defined as the zero-resistivity
in the resistivity measurement under magnetic field, which
corresponds to the upper critical field Hc2.

Figure 3 shows the temperature dependence of Hc2 for
H k ½100# and ½001#. The value of Hc2 at 0 K, Hc2ð0Þ, and the
slope of Hc2 at Tc, &dHc2=dT , are obtained as Hc2ð0Þ ¼
37 kOe and &dHc2=dT ¼ 64 kOe/K for H k ½100#, and
Hc2ð0Þ ¼ 143 kOe and &dHc2=dT ¼ 310 kOe/K for
H k ½001#. The value of &dHc2=dT is extremely large, but
the upper critical field is strongly suppressed with decreasing
temperature, suggesting the existence of a large Pauli
paramagnetic effect.

Figure 4 shows the angular dependence of Hc2 at 80 mK.
Hc2 is highly anisotropic and large for H k ½001#. Here
we assumed that anisotropy of Hc2 is mainly due to the
topology of the Fermi surface. We tried to fit the Hc2 data to
the so-called anisotropic effective mass model, as in a
heavy-fermion superconductor PuRhGa5.7) The solid line in
Fig. 4 is the result of fitting, using the following function:
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[100] directions, and ! is the field angle from [001] to [100].
The value of m)c=m
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a ¼ 0:067 or m)a=m

)
c ¼ 14:9 is compared

to the value of m)c=m
)
a ¼ 3:9 in PuRhGa5, for example. In

the case of PuRhGa5, the electronic state is considered to
be quasi-two-dimensional, indicating an ellipsoidal Fermi
surface elongated along the [001] direction. On the other
hand, the present ellipsoidal Fermi surface in NpPd5Al2 is
extremely flat as a pancake, as shown in the inset of Fig. 4.
Here we note that Hc2 in the (001) plane possesses four-fold
symmetry, reflecting the tetragonal structure: Hc2 ¼ 37:0
kOe for H k ½100# and Hc2 ¼ 36:6 kOe for H k ½110#.

Next we show in Fig. 5 the temperature dependence of the
specific heat C in the form of C=T . The specific heat jump
!C at Tc ¼ 4:9 K is due to the superconducting transition.
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both channels (Φ order). In this way the system escapes
from the non-trivial fixed point of the impurity model,
and goes to the extremes J = 0 and/or J = ∞.

6.2 Diagonal orders
At half-filling of the conduction bands, the staggered

orbital order, namely the antiferro quadrupole (AFQ) or-
der, has the highest transition temperature, as shown in
Fig.8. With much lower density of conduction electrons,
the homogeneous orbital order, namely ferro quadrupole
(FQ) order is most stabilized. These orders are real-
ized by the orbital version of the RKKY interactions,
and the Kondo effect is not essential. In actual Pr sys-
tems with the doublet CEF ground state, the AFQ is
often observed as in PrIr2Zn20.60 On the other hand,
PrTi2Al20 has a ferro quadrupole (FQ) order at zero
pressure.38 Interestingly, the entropy of PrV2Al20 at the
presumed AFQ transition is only ∼ 0.5 ln 2,18 in contrast
to the standard value ln 2 as in the case of PrTi2Al20.
It seems that PrV2Al20 has stronger hybridization than
PrTi2Al20, and it is desirable to study the nature of the
order in more detail.

Fig. 11. Temperature-dependence of the resistivity in PrTi2Al20
under pressure16 (upper panel), and in UBe13 under magnetic
fields17 (lower panel).

Fig. 12. Specific heat and entropy associated with (a) the AF
pseudo-spin, and (b) the composite order Ψz.13 The entropy
includes contribution from conduction electrons. See text for de-
tails.

Suppose that ordinary AFQ is suppressed by some rea-
son, and the composite Ψz order sets in from the para-
magnetic phase. Figure 12 shows the specific heat and
the entropy associated with each transition.13 Numerical
calculation gives the entropy at the AFQ transition is
about 1.35 ln2, while at the Ψz transition about 0.79 ln 2.
Hence, the two diagonal orders may be distinguished by
the entropy. One may naturally ask about the change of
entropy associated with the transition. For this purpose
one can estimate and remove the contribution in the hy-
pothetical disordered state below TF

chan. It turns out that
C(T )/T remains almost constant in the hypothetical dis-
ordered state, and the corresponding entropy amounts to
0.24 ln 2 at TF

chan.
13 Hence the composite order removes

the entropy by (0.79−0.24) ln2 which is close to 0.5 ln 2.
With the homogeneous order Ψz(0), the correlation

⟨Ŝ · ŝσ⟩ of pseudo-spins (orbitals) at each site depends
on σ. As shown in Fig.5(d), spin-down (α = 2) conduc-
tion electrons make the orbital singlet together with the
localized pseudo-spin, while the spin-up (α = 1) elec-
trons remain essentially free. The resultant distribution
of each spin in a unit cell should be different as illustrated
in Fig.13. Although the difference of the spin distribution
is small because it comes from conduction electrons, the
deviation of the form factor from the crystalline sym-
metry may be detected experimentally. The resultant
anomalous Bragg intensity can in principle be probed
by resonant X-ray scattering and spin-polarized neutron
scattering.
The most intriguing candidate material to realize the

Ψ order is URu2Si2 which has a phase transition called
the hidden order (HO) with large anomaly in specific
heat. In spite of great effort of 30 years,61 the HO has
still escaped identification of its order parameter. It is
clear that the 2chKL model cannot faithfully describe
URu2Si2 because the charge fluctuation of f electrons in
URu2Si2 is strong enough to form the hybridized Fermi
surface, which has been observed by de Haas-van Alphen

A. Sakai, K. Kuga, and S. Nakatsuji, J. Phys. Soc. Jpn. 81, 083702 (2012).
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk
Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-
fore any background subtraction. (B) Angular dependent quantum oscillation measure-
ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals
(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range
11 T < B < 34 T on a third crystal (closed square), to complement previous angular
dependent measurements on different crystals reported in ref. [25] and measured in
the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol
B stands for the applied magnetic induction. The angular dependence of the observed
quantum oscillations is in good agreement with the three-dimensional ellipsoidal model
characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit
lines). (Next page.)
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk
Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-
fore any background subtraction. (B) Angular dependent quantum oscillation measure-
ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals
(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range
11 T < B < 34 T on a third crystal (closed square), to complement previous angular
dependent measurements on different crystals reported in ref. [25] and measured in
the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol
B stands for the applied magnetic induction. The angular dependence of the observed
quantum oscillations is in good agreement with the three-dimensional ellipsoidal model
characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit
lines). (Next page.)
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• d-f	band	inversion	at	the	X	point	
• 3	Dirac	cones	on	the	surface	

A	possible	Topological	Insulator?

Topological
Phase

 Transition

at the � point. Away from the � point, the e
g

orbitals split into two Kramers doublets,

the lower one dipping down at the X point, where it dives through the the 4f bands.

Hybridization between the two bands forces 4f states from the valence to the conduction

band, forming heavy 4f electron band pockets at the X points. Once the d-band crosses

through the f-band at the three X points, so long as there are no other crossings, the

resulting non-interacting band-structure is innevitably topological, independently of the

details of the f-multiplets (See Fig. ??).

Figure 6

Schematic illustration of the band-crossing between d- and f- states at the X point in SmB
6

. (a)
Bands uncrossed. The filled 4f6 band of f-electrons is a conventional insulator. (b) Bands crossed:
the d-band cuts beneath the f-band at the X-point, displacing an odd parity f-state from the
valence band to the conduction band. The resulting (�1)3 sign reversal in the Z
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index gives rise
to a topological insulator.

Infact, in the cubic environment, the six J = 5/2 4f orbitals of the Samarium split into

a �
7

doublet and a �
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quartet. LDA studies (? ? ) suggest that the physics of the 4f

orbitals is governed by valence fluctuations involving electrons of the �
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quartet and the

conduction e
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leads to a simple physical picture in which the �
8

quartet of f -states hybridizes with an e
g

quartet of d-states to form a Kondo insulator.

In 2011, Takimoto (? ) introduced a tight-binding model for SmB
6

in which the

hopping amplitudes in the Hamiltonian (??) are non-zero for nearest- and next-nearest-

neighbors, while hybridization involves the nearest-neighbor overlap integrals only. The

values of the hopping amplitudes were adjusted to fit the LDA band structure results, while

the e↵ect of interactions between the f -electrons is modelled as a renormalization of the bare

f -energy level and the hybridization. In Takimoto’s model, a singlet d-like orbital inverts

with an f -like orbital at the X point of the bulk Brillouin zone, while the remaining two

bands remain inert. This band inversion at the X points implies the existence of three Dirac

cones on the surface: one at the surface � point and two at the X points. Interestingly,

the corresponding Fermi velocities for the electrons at the � point are the same, while the

Fermi velocities at the X are strongly anisotropic. (? )
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Dirac cone surface states.

Figure 3

Showing (a) topologically trivial band insulator with Z
2

= +1 (b) band-crossing of even and odd
parity states at an odd number of high symmetry points leads to a topological insulator with
Z
2

= �1. Each band crossing generates a Dirac cone of spin-momentum locked surface states.

2.1. Topology meets strong correlation

In 2010, Maxim Dzero, Kai Sun, Victor Galitski and Piers Coleman (16) proposed that

Kondo insulators can form strongly interacting versions of the Z
2

topological insulator.

The key points motivating this idea were that:

• The spin orbit coupling of f-electrons in a Kondo insulator, of the order of 0.5eV, is

much larger than the characteristic 10meV gap of a Kondo insulator, making these

essentially infinite spin orbit coupled systems, ideal candidates for spin-orbit driven

topological order.

• f-states are odd-parity, whereas the predominantly d-band conduction bands that

hybridize with them are even parity, so that each time there is a band-crossing between

the two, the Z
2

index changes sign, leading to a topological insulator.

The TKI proposal provides an appealing potential resolution of a long-standing mystery

in the Kondo insulator SmB
6

, which for more than thirty years, had been known to exhibit

a low temperature resistivity plateau (54, 55) (see Fig. 7), which could be naturally under-

stood as a consequence of topologically protected surface states (16, 56). In 2012, teams at

the University of Michigan (17) and the University of California, Irvine (18), confirmed the

existence of robust surface states in SmB
6

. Most recently 2014 (57) Xu et al. have detected

the spin-polarized structure of the surface states in these materials that tentatively confirm

their topological character (see discussion in section 4.2).
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with an f -like orbital at the X point of the bulk Brillouin zone, while the remaining two

bands remain inert. This band inversion at the X points implies the existence of three Dirac

cones on the surface: one at the surface � point and two at the X points. Interestingly,

the corresponding Fermi velocities for the electrons at the � point are the same, while the

Fermi velocities at the X are strongly anisotropic. (? )
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Figure 3: Low temperature thermal conductivity of SmB6. (A) Thermal conductivity
of an floating zone-grown single crystal of SmB6 plotted as /T as a function of T 2.
The value of thermal conductivity at the lowest measured temperature shows a nearly
fourfold increase in increasing applied magnetic fields up to 12 T. The zero field data
is largely accounted for by the phonon contribution calculated for a Debye tempera-
ture of ⇥

D

= 373 K (red line denoted by 

ph.

/T ), obtained from elastic constants [49].
The enhancement in a magnetic field is clearly seen in the inset upon subtracting the
phonon contribution. (B) Thermal conductivity as a function of magnetic field shows
a significant increase with magnetic field for two floating zone-grown single crystals,
while the enhancement for the flux-grown crystal is subtle. (C) Low temperature ther-
mal conductivity measured on two different organic insulating spin liquids, taken from
refs. [39, 50], both of them associated with a finite linear specific heat coefficient (in-
set [41, 42]), resembling our findings in SmB6. (D) Large magnetic field dependence of
the low temperature thermal conductivity measured in both organic spin liquids (from
refs. [39, 50]), seen to be remarkably similar to our measurements in floating zone-
grown SmB6.
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of an floating zone-grown single crystal of SmB6 plotted as /T as a function of T 2.
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fourfold increase in increasing applied magnetic fields up to 12 T. The zero field data
is largely accounted for by the phonon contribution calculated for a Debye tempera-
ture of ⇥
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= 373 K (red line denoted by 

ph.

/T ), obtained from elastic constants [49].
The enhancement in a magnetic field is clearly seen in the inset upon subtracting the
phonon contribution. (B) Thermal conductivity as a function of magnetic field shows
a significant increase with magnetic field for two floating zone-grown single crystals,
while the enhancement for the flux-grown crystal is subtle. (C) Low temperature ther-
mal conductivity measured on two different organic insulating spin liquids, taken from
refs. [39, 50], both of them associated with a finite linear specific heat coefficient (in-
set [41, 42]), resembling our findings in SmB6. (D) Large magnetic field dependence of
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk
Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-
fore any background subtraction. (B) Angular dependent quantum oscillation measure-
ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals
(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range
11 T < B < 34 T on a third crystal (closed square), to complement previous angular
dependent measurements on different crystals reported in ref. [25] and measured in
the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol
B stands for the applied magnetic induction. The angular dependence of the observed
quantum oscillations is in good agreement with the three-dimensional ellipsoidal model
characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit
lines). (Next page.)
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Figure 9: The Lifshitz-Kosevich plot for each of the quantum oscillation frequencies in
floating zone-grown SmB6 observed near [110] for temperatures down to 20 mK for
the dominant F = 330 T frequency, and down to 0.4 K for all other frequencies, and
their corresponding effective masses for a magnetic field window of 21 to 40 T and a
temperature range of 1 K to 30 K.
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Figure 3: Low temperature thermal conductivity of SmB6. (A) Thermal conductivity
of an floating zone-grown single crystal of SmB6 plotted as /T as a function of T 2.
The value of thermal conductivity at the lowest measured temperature shows a nearly
fourfold increase in increasing applied magnetic fields up to 12 T. The zero field data
is largely accounted for by the phonon contribution calculated for a Debye tempera-
ture of ⇥

D

= 373 K (red line denoted by 

ph.

/T ), obtained from elastic constants [49].
The enhancement in a magnetic field is clearly seen in the inset upon subtracting the
phonon contribution. (B) Thermal conductivity as a function of magnetic field shows
a significant increase with magnetic field for two floating zone-grown single crystals,
while the enhancement for the flux-grown crystal is subtle. (C) Low temperature ther-
mal conductivity measured on two different organic insulating spin liquids, taken from
refs. [39, 50], both of them associated with a finite linear specific heat coefficient (in-
set [41, 42]), resembling our findings in SmB6. (D) Large magnetic field dependence of
the low temperature thermal conductivity measured in both organic spin liquids (from
refs. [39, 50]), seen to be remarkably similar to our measurements in floating zone-
grown SmB6.
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk
Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-
fore any background subtraction. (B) Angular dependent quantum oscillation measure-
ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals
(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range
11 T < B < 34 T on a third crystal (closed square), to complement previous angular
dependent measurements on different crystals reported in ref. [25] and measured in
the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol
B stands for the applied magnetic induction. The angular dependence of the observed
quantum oscillations is in good agreement with the three-dimensional ellipsoidal model
characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit
lines). (Next page.)
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Figure 9: The Lifshitz-Kosevich plot for each of the quantum oscillation frequencies in
floating zone-grown SmB6 observed near [110] for temperatures down to 20 mK for
the dominant F = 330 T frequency, and down to 0.4 K for all other frequencies, and
their corresponding effective masses for a magnetic field window of 21 to 40 T and a
temperature range of 1 K to 30 K.
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Figure 3: Low temperature thermal conductivity of SmB6. (A) Thermal conductivity
of an floating zone-grown single crystal of SmB6 plotted as /T as a function of T 2.
The value of thermal conductivity at the lowest measured temperature shows a nearly
fourfold increase in increasing applied magnetic fields up to 12 T. The zero field data
is largely accounted for by the phonon contribution calculated for a Debye tempera-
ture of ⇥

D

= 373 K (red line denoted by 

ph.

/T ), obtained from elastic constants [49].
The enhancement in a magnetic field is clearly seen in the inset upon subtracting the
phonon contribution. (B) Thermal conductivity as a function of magnetic field shows
a significant increase with magnetic field for two floating zone-grown single crystals,
while the enhancement for the flux-grown crystal is subtle. (C) Low temperature ther-
mal conductivity measured on two different organic insulating spin liquids, taken from
refs. [39, 50], both of them associated with a finite linear specific heat coefficient (in-
set [41, 42]), resembling our findings in SmB6. (D) Large magnetic field dependence of
the low temperature thermal conductivity measured in both organic spin liquids (from
refs. [39, 50]), seen to be remarkably similar to our measurements in floating zone-
grown SmB6.
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk
Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-
fore any background subtraction. (B) Angular dependent quantum oscillation measure-
ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals
(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range
11 T < B < 34 T on a third crystal (closed square), to complement previous angular
dependent measurements on different crystals reported in ref. [25] and measured in
the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol
B stands for the applied magnetic induction. The angular dependence of the observed
quantum oscillations is in good agreement with the three-dimensional ellipsoidal model
characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit
lines). (Next page.)
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Figure 9: The Lifshitz-Kosevich plot for each of the quantum oscillation frequencies in
floating zone-grown SmB6 observed near [110] for temperatures down to 20 mK for
the dominant F = 330 T frequency, and down to 0.4 K for all other frequencies, and
their corresponding effective masses for a magnetic field window of 21 to 40 T and a
temperature range of 1 K to 30 K.
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Figure 3: Low temperature thermal conductivity of SmB6. (A) Thermal conductivity
of an floating zone-grown single crystal of SmB6 plotted as /T as a function of T 2.
The value of thermal conductivity at the lowest measured temperature shows a nearly
fourfold increase in increasing applied magnetic fields up to 12 T. The zero field data
is largely accounted for by the phonon contribution calculated for a Debye tempera-
ture of ⇥

D

= 373 K (red line denoted by 

ph.

/T ), obtained from elastic constants [49].
The enhancement in a magnetic field is clearly seen in the inset upon subtracting the
phonon contribution. (B) Thermal conductivity as a function of magnetic field shows
a significant increase with magnetic field for two floating zone-grown single crystals,
while the enhancement for the flux-grown crystal is subtle. (C) Low temperature ther-
mal conductivity measured on two different organic insulating spin liquids, taken from
refs. [39, 50], both of them associated with a finite linear specific heat coefficient (in-
set [41, 42]), resembling our findings in SmB6. (D) Large magnetic field dependence of
the low temperature thermal conductivity measured in both organic spin liquids (from
refs. [39, 50]), seen to be remarkably similar to our measurements in floating zone-
grown SmB6.

11

Laurita,	et	al.	PRB	94,		
165154	(2016).		
		

-45 0 45 90
200

400

600

800

1000

6000

8000

10000

12000
14000
16000
18000

0 5 10 15 20 25 30

0.720

0.725

0.730

0.735

0.740

0.745

1 2 3 4
-4x10-4
-2x10-4

0
2x10-4
4x10-4

3D

F/B

E

C

LaB6

T = 2 K
  ~ [100]
F = 5.9 T 

1 2 3 4

-3x10-4

0

3x10-4

T = 1.12K
 ~ [100]
F = 31 T

F/B

SmB6

 (µ
B
⋅B

 p
er

 u
ni

t c
el

l) 
[3

D
 m

od
el

]

3D

0.2 0.4 0.6
1/B (T-1)

0.04 0.08 0.12
1/B (T-1)

-2x10-3
-1x10-3
0
1x10-3
2x10-3

C
ap

ac
ita

nc
e 

(p
F)

-5x10-4

0

5x10-4

1 2 3 4
-20

-10

0

10

20

2D

    SmB6

(G. Li et al. [24])

T = 0.3 K
 ~ [110]
F = 50 T

F/B

2D
x100

1 2 3 4
-200

-100

0

100

200 SmB6

T = 1.12K
 ~ [100]
F = 31 T

G

F

 (µ
B
⋅B

 p
er

 u
ni

t c
el

l) 
[2

D
 m

od
el

]

F/B

-4x10-4
-2x10-4
0
2x10-4
4x10-4

C
ap

ac
ita

nc
e 

(p
F)

0.04 0.08 0.12
1/B (T-1)

0.02 0.04 0.06 0.08
1/B (T-1)

A D

B

ρ

α
ρ

ε

α'

 

  (degrees)
[100] [111] [110][110]

SmB6

α

λ
ξ

 

Q
ua

nt
um

 o
sc

ill
at

io
n 

fre
qu

en
cy

 (T
)

SmB6

T = 40 mK
  ~ [100] C

ap
ac

ita
nc

e 
(p

F)

B (T)

Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk
Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-
fore any background subtraction. (B) Angular dependent quantum oscillation measure-
ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals
(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range
11 T < B < 34 T on a third crystal (closed square), to complement previous angular
dependent measurements on different crystals reported in ref. [25] and measured in
the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol
B stands for the applied magnetic induction. The angular dependence of the observed
quantum oscillations is in good agreement with the three-dimensional ellipsoidal model
characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit
lines). (Next page.)
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Figure 9: The Lifshitz-Kosevich plot for each of the quantum oscillation frequencies in
floating zone-grown SmB6 observed near [110] for temperatures down to 20 mK for
the dominant F = 330 T frequency, and down to 0.4 K for all other frequencies, and
their corresponding effective masses for a magnetic field window of 21 to 40 T and a
temperature range of 1 K to 30 K.
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• Obey	Fermi-Dirac	statistics.	
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Figure 3: Low temperature thermal conductivity of SmB6. (A) Thermal conductivity
of an floating zone-grown single crystal of SmB6 plotted as /T as a function of T 2.
The value of thermal conductivity at the lowest measured temperature shows a nearly
fourfold increase in increasing applied magnetic fields up to 12 T. The zero field data
is largely accounted for by the phonon contribution calculated for a Debye tempera-
ture of ⇥

D

= 373 K (red line denoted by 

ph.

/T ), obtained from elastic constants [49].
The enhancement in a magnetic field is clearly seen in the inset upon subtracting the
phonon contribution. (B) Thermal conductivity as a function of magnetic field shows
a significant increase with magnetic field for two floating zone-grown single crystals,
while the enhancement for the flux-grown crystal is subtle. (C) Low temperature ther-
mal conductivity measured on two different organic insulating spin liquids, taken from
refs. [39, 50], both of them associated with a finite linear specific heat coefficient (in-
set [41, 42]), resembling our findings in SmB6. (D) Large magnetic field dependence of
the low temperature thermal conductivity measured in both organic spin liquids (from
refs. [39, 50]), seen to be remarkably similar to our measurements in floating zone-
grown SmB6.

11

Laurita,	et	al.	PRB	94,		
165154	(2016).		
		

-45 0 45 90
200

400

600

800

1000

6000

8000

10000

12000
14000
16000
18000

0 5 10 15 20 25 30

0.720

0.725

0.730

0.735

0.740

0.745

1 2 3 4
-4x10-4
-2x10-4

0
2x10-4
4x10-4

3D

F/B

E

C

LaB6

T = 2 K
  ~ [100]
F = 5.9 T 

1 2 3 4

-3x10-4

0

3x10-4

T = 1.12K
 ~ [100]
F = 31 T

F/B

SmB6

 (µ
B
⋅B

 p
er

 u
ni

t c
el

l) 
[3

D
 m

od
el

]

3D

0.2 0.4 0.6
1/B (T-1)

0.04 0.08 0.12
1/B (T-1)

-2x10-3
-1x10-3
0
1x10-3
2x10-3

C
ap

ac
ita

nc
e 

(p
F)

-5x10-4

0

5x10-4

1 2 3 4
-20

-10

0

10

20

2D

    SmB6

(G. Li et al. [24])

T = 0.3 K
 ~ [110]
F = 50 T

F/B

2D
x100

1 2 3 4
-200

-100

0

100

200 SmB6

T = 1.12K
 ~ [100]
F = 31 T

G

F

 (µ
B
⋅B

 p
er

 u
ni

t c
el

l) 
[2

D
 m

od
el

]

F/B

-4x10-4
-2x10-4
0
2x10-4
4x10-4

C
ap

ac
ita

nc
e 

(p
F)

0.04 0.08 0.12
1/B (T-1)

0.02 0.04 0.06 0.08
1/B (T-1)

A D

B

ρ

α
ρ

ε

α'

 

  (degrees)
[100] [111] [110][110]

SmB6

α

λ
ξ

 

Q
ua

nt
um

 o
sc

ill
at

io
n 

fre
qu

en
cy

 (T
)

SmB6

T = 40 mK
  ~ [100] C

ap
ac

ita
nc

e 
(p

F)

B (T)

Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk
Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-
fore any background subtraction. (B) Angular dependent quantum oscillation measure-
ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals
(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range
11 T < B < 34 T on a third crystal (closed square), to complement previous angular
dependent measurements on different crystals reported in ref. [25] and measured in
the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol
B stands for the applied magnetic induction. The angular dependence of the observed
quantum oscillations is in good agreement with the three-dimensional ellipsoidal model
characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit
lines). (Next page.)
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Figure 9: The Lifshitz-Kosevich plot for each of the quantum oscillation frequencies in
floating zone-grown SmB6 observed near [110] for temperatures down to 20 mK for
the dominant F = 330 T frequency, and down to 0.4 K for all other frequencies, and
their corresponding effective masses for a magnetic field window of 21 to 40 T and a
temperature range of 1 K to 30 K.
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• Neutral	but	exhibit	orbital	diamagnetism,		
• Obey	Fermi-Dirac	statistics.	

• Quasiparticles	do	not	couple	to	E	but	couple	to	B.

• Yet	microscopically	particles	couple	to	the	vector	potential:
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Figure 3: Low temperature thermal conductivity of SmB6. (A) Thermal conductivity
of an floating zone-grown single crystal of SmB6 plotted as /T as a function of T 2.
The value of thermal conductivity at the lowest measured temperature shows a nearly
fourfold increase in increasing applied magnetic fields up to 12 T. The zero field data
is largely accounted for by the phonon contribution calculated for a Debye tempera-
ture of ⇥

D

= 373 K (red line denoted by 

ph.

/T ), obtained from elastic constants [49].
The enhancement in a magnetic field is clearly seen in the inset upon subtracting the
phonon contribution. (B) Thermal conductivity as a function of magnetic field shows
a significant increase with magnetic field for two floating zone-grown single crystals,
while the enhancement for the flux-grown crystal is subtle. (C) Low temperature ther-
mal conductivity measured on two different organic insulating spin liquids, taken from
refs. [39, 50], both of them associated with a finite linear specific heat coefficient (in-
set [41, 42]), resembling our findings in SmB6. (D) Large magnetic field dependence of
the low temperature thermal conductivity measured in both organic spin liquids (from
refs. [39, 50]), seen to be remarkably similar to our measurements in floating zone-
grown SmB6.
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk
Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-
fore any background subtraction. (B) Angular dependent quantum oscillation measure-
ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals
(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range
11 T < B < 34 T on a third crystal (closed square), to complement previous angular
dependent measurements on different crystals reported in ref. [25] and measured in
the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol
B stands for the applied magnetic induction. The angular dependence of the observed
quantum oscillations is in good agreement with the three-dimensional ellipsoidal model
characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit
lines). (Next page.)
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Figure 9: The Lifshitz-Kosevich plot for each of the quantum oscillation frequencies in
floating zone-grown SmB6 observed near [110] for temperatures down to 20 mK for
the dominant F = 330 T frequency, and down to 0.4 K for all other frequencies, and
their corresponding effective masses for a magnetic field window of 21 to 40 T and a
temperature range of 1 K to 30 K.
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• Neutral	but	exhibit	orbital	diamagnetism,		
• Obey	Fermi-Dirac	statistics.	

• Quasiparticles	do	not	couple	to	E	but	couple	to	B.

• Yet	microscopically	particles	couple	to	the	vector	potential:
• 					a	differential	coupling	to	E	and	B	is	prevented	by	gauge	invariance.
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� r�

B = r ⇥ A

The	SmB6	Conundrum
Bulk	is	anomalous:	electronically	insulating		
but	hosts	seemingly	gapless	excitations.	

		

Robust bulk insulator 
(Kurdak et al, APS 2017)
Seemingly Topological, yet

Phalen,	PRX	4	031012	(2014)	 M. Hartstein, M Sutherland
 S. Sebastian  et al.  (Preprint)
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Figure 3: Low temperature thermal conductivity of SmB6. (A) Thermal conductivity
of an floating zone-grown single crystal of SmB6 plotted as /T as a function of T 2.
The value of thermal conductivity at the lowest measured temperature shows a nearly
fourfold increase in increasing applied magnetic fields up to 12 T. The zero field data
is largely accounted for by the phonon contribution calculated for a Debye tempera-
ture of ⇥

D

= 373 K (red line denoted by 

ph.

/T ), obtained from elastic constants [49].
The enhancement in a magnetic field is clearly seen in the inset upon subtracting the
phonon contribution. (B) Thermal conductivity as a function of magnetic field shows
a significant increase with magnetic field for two floating zone-grown single crystals,
while the enhancement for the flux-grown crystal is subtle. (C) Low temperature ther-
mal conductivity measured on two different organic insulating spin liquids, taken from
refs. [39, 50], both of them associated with a finite linear specific heat coefficient (in-
set [41, 42]), resembling our findings in SmB6. (D) Large magnetic field dependence of
the low temperature thermal conductivity measured in both organic spin liquids (from
refs. [39, 50]), seen to be remarkably similar to our measurements in floating zone-
grown SmB6.
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk
Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-
fore any background subtraction. (B) Angular dependent quantum oscillation measure-
ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals
(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range
11 T < B < 34 T on a third crystal (closed square), to complement previous angular
dependent measurements on different crystals reported in ref. [25] and measured in
the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol
B stands for the applied magnetic induction. The angular dependence of the observed
quantum oscillations is in good agreement with the three-dimensional ellipsoidal model
characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit
lines). (Next page.)
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Figure 9: The Lifshitz-Kosevich plot for each of the quantum oscillation frequencies in
floating zone-grown SmB6 observed near [110] for temperatures down to 20 mK for
the dominant F = 330 T frequency, and down to 0.4 K for all other frequencies, and
their corresponding effective masses for a magnetic field window of 21 to 40 T and a
temperature range of 1 K to 30 K.
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• Neutral	but	exhibit	orbital	diamagnetism,		
• Obey	Fermi-Dirac	statistics.	

• Quasiparticles	do	not	couple	to	E	but	couple	to	B.

• Yet	microscopically	particles	couple	to	the	vector	potential:
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Figure 3: Low temperature thermal conductivity of SmB6. (A) Thermal conductivity
of an floating zone-grown single crystal of SmB6 plotted as /T as a function of T 2.
The value of thermal conductivity at the lowest measured temperature shows a nearly
fourfold increase in increasing applied magnetic fields up to 12 T. The zero field data
is largely accounted for by the phonon contribution calculated for a Debye tempera-
ture of ⇥

D

= 373 K (red line denoted by 

ph.

/T ), obtained from elastic constants [49].
The enhancement in a magnetic field is clearly seen in the inset upon subtracting the
phonon contribution. (B) Thermal conductivity as a function of magnetic field shows
a significant increase with magnetic field for two floating zone-grown single crystals,
while the enhancement for the flux-grown crystal is subtle. (C) Low temperature ther-
mal conductivity measured on two different organic insulating spin liquids, taken from
refs. [39, 50], both of them associated with a finite linear specific heat coefficient (in-
set [41, 42]), resembling our findings in SmB6. (D) Large magnetic field dependence of
the low temperature thermal conductivity measured in both organic spin liquids (from
refs. [39, 50]), seen to be remarkably similar to our measurements in floating zone-
grown SmB6.
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Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk
Fermi surface model. (A) shows the measured oscillations in the magnetic torque be-
fore any background subtraction. (B) Angular dependent quantum oscillation measure-
ments in the [110]-[100] rotation plane in the field range 8 T < B < 35 T on two crystals
(open and solid diamonds), and in the [100]-[111]-[100] rotation plane in the field range
11 T < B < 34 T on a third crystal (closed square), to complement previous angular
dependent measurements on different crystals reported in ref. [25] and measured in
the [100]-[111]-[110] rotation plane (open and closed circles). Throughout, the symbol
B stands for the applied magnetic induction. The angular dependence of the observed
quantum oscillations is in good agreement with the three-dimensional ellipsoidal model
characteristic of rare-earth metallic hexaborides and proposed in ref. [25] (shown by fit
lines). (Next page.)
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Figure 9: The Lifshitz-Kosevich plot for each of the quantum oscillation frequencies in
floating zone-grown SmB6 observed near [110] for temperatures down to 20 mK for
the dominant F = 330 T frequency, and down to 0.4 K for all other frequencies, and
their corresponding effective masses for a magnetic field window of 21 to 40 T and a
temperature range of 1 K to 30 K.
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!		Can	we	have	broken	gauge	invariance	without	superconductivity?

Superconductivity: requires 
Meissner and topological rigidity.

FIG. 1. Illustration of topological stability. The stability of a supercurrent is analogous to topological

stability of a string wrapped around a surface. (a) The winding number of a string wrapped around a rod

is topologically stable and it can not be unravelled (b) A string wrapped around the equator of a sphere

unravels due to a lack of topological stability.

The corresponding homotopy class ⇡1(SO(3)) = Z2 does does allow a single vortex, but does not

permit macroscopically quantized rotation.

In the solid state, the conditions for a topological failure of superconductivity are more strin-

gent because of crystalline anisotropy. An electronic copy of He-3A would be a superconductor,

because the orbital components of the triplet condensate would lock to the lattice. However, a way

out is suggested by crystal field theory, which allows the restoration of crystalline isotropy for low

spin objects, such as a spin 1/2 ferromagnet in a cubic crystal. If we could similarly eliminate

the orbital component of a triplet condensate, isotropy would be restored. While the exchange

symmetry of an electron pair rules this out in a BCS superconductor, a viable alternative arises in

odd-frequency pairing where the odd-parity in time permits a spin triplet s-wave pair[20–22] with

no orbital angular momentum, making isotropy possible in a cubic crystal.

To develop this idea, we consider a cubic lattice of local moments interacting antiferromag-

netically with a band of conduction electrons. We will assume that near an antiferromagnetic

instability, a Kondo-screened state becomes partially unstable to a phase where Cooper pairs en-

3

Hanson, Oganesyan and Sondhi, 
Annals Of Physics vol. 313, 497 (2004)

Coleman, Miranda, Tsvelik,  1993, Baskaran 2015
Onur Erten, Po-Yao Chang, Piers Coleman and Alexei Tsvelik arXiv:1701.06582 

SmB6:  a Skyrme Dielectric? 
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tangle with the local moments S(x) developing a composite order parameter[22–24]
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where x = (i, j, k) are the discrete lattice points. The two orthogonal unit vectors (̂l, m̂) define

a triad of orthogonal unit vectors (̂l, m̂, n̂) with principal axis n̂ = l̂ ⇥ m̂. Microscopically, such

an order parameter can arise from an odd-frequency triplet superconductor[25, 26]. The most

important symmetry aspect of the order parameter, is that it only carries spin angular momentum,

because odd frequency pair correlations enforce a triplet order parameter to be spatially even

parity, allowing for an s-wave triplet. In a cubic crystal, this allows for the possibilty of the perfect

SO(3) rotation symmetry required for the failure of superconductivity.

We can use the rotational and gauge symmetries of the order parameter to write down a long-

wavelength action[22, 27]
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Here, for clarity of exposition, we have adopted a relativistic notation (x2
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allows us to demonstrate the break-down of electromagnetic screening and the emergence of a

dielectric[28]. The first two terms describe the free energy of the condensate, where !
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FIG. 1. Illustration of topological stability. The stability of a supercurrent is analogous to topological

stability of a string wrapped around a surface. (a) The winding number of a string wrapped around a rod

is topologically stable and it can not be unravelled (b) A string wrapped around the equator of a sphere
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The corresponding homotopy class ⇡1(SO(3)) = Z2 does does allow a single vortex, but does not
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allows us to demonstrate the break-down of electromagnetic screening and the emergence of a

dielectric[28]. The first two terms describe the free energy of the condensate, where !
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is the superfluid stiffness,
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