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Many-Body Physics: Unfinished Revolution

Piers Coleman

Abstract.The study of many-body physics has provided a scientific playground of
surprise and continuing revolution over the past half century. The serendipitous
discovery of new states and properties of matter, phenomena such as superfluidity,
the Meissner, the Kondo and the fractional quantum hall effects, have driven the
development of new conceptual frameworks for our understanding about collective
behavior, the ramifications of which have spread far beyond the confines of terres-
trial condensed matter physics- to cosmology, nuclear and particle physics. Here I
shall selectively review some of the developments in this field, from the cold-war
period, until the present day. I describe how, with the discovery of new classes of
collective order, the unfolding puzzles of high temperature superconductivity and
quantum criticality, the prospects for major conceptual discoveries remain as bright
today as they were more than half a century ago.

1 Emergent Matter: a new Frontier

Since the time of the Greeks, scholars have pondered over the principles that
govern the universe on its tiniest and most vast scales. The icons that exemplify
these frontiers are very well known - the swirling galaxy denoting the cosmos and
the massive accelerators used to probe matter at successively smaller scales- from
the atom down to the quark and beyond. These traditional frontiers of physics are
largely concerned with reductionism: the notion that once we know the laws of
nature that operate on the smallest possible scales, the mysteries of the universe
will finally be revealed to us[1].

Over the last century and a half, a period that stretches back to Darwin and
Boltzmann- scientists have also become fascinated by another notion: the idea
that to understand nature, one also needs to understand and study the princi-
ples that govern collective behavior of vast assemblies of matter. For a wide range
of purposes, we already know the microscopic laws that govern matter on the
tiniest scales. For example, a gold atom can be completely understood with the
Schrödinger equation and the laws of quantum mechanics established more than
seventy years ago. Yet, a gold atom is spherical and featureless- quite unlike the
lustrous malleable and conducting metal which human society so prizes. To under-
stand how crystalline assemblies of gold atoms acquire the properties of metallic
gold, we need new principles– principles that describe the collective behavior of
matter when humungous numbers of gold atoms congregate to form a metallic
crystal. It is the search for these new principles that defines the frontiers of many-
body physics in the realms of condensed matter physics and its closely related
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discipline of statistical mechanics.
In this informal article, I shall talk about the evolution of our ideas about

the collective behavior of matter since the advent of quantum mechanics, hoping
to give a sense of how often unexpected experimental discovery has seeded the
growth of conceptually new ideas about collective matter. Given the brevity of
the article, I must apologize for the necessarily selective nature of this discussion.
In particular, I have had to make a painful decision to leave out a discussion of
the many-body physics of localization and that of spin glasses. I do hope future
articles will have opportunity to redress this imbalance.

The past seventy years of development in many-body physics has seen a
period of unprecedented conceptual and intellectual development. Experimental
discoveries of remarkable new phenomena, such as superconductivity, superflu-
idity, criticality, liquid crystals, anomalous metals, antiferromagnetism and the
quantized Hall effect, have each prompted a renaissance in areas once thought to
be closed to further fruitful intellectual study. Indeed, the history of the field is
marked by the most wonderful and unexpected shifts in perspective and under-
standing that have involved close linkages between experiment, new mathematics
and new concepts.

I shall discuss three eras:- the immediate aftermath of quantum mechanics—
many-body physics in the cold war, and the modern era of correlated matter
physics. Over this period, physicists’ view of the matter has evolved
dramatically- as witnessed by the evolution in our view of “electricity” from the
idea of the degenerate electron gas, to the concept of the Fermi liquid, to new kinds
of electron fluid, such as a the Luttinger liquid or fractional quantum Hall state.
Progress was not smooth and gradual, but often involved the agony, despair and
controversy of the creative process. Even the notion that an electron is a fermion
was controversial. Wolfgang Pauli, inventor of the exclusion principle could not
initially envisage that this principle would apply beyond the atom to macroscopi-
cally vast assemblies of degenerate electrons; indeed, he initially preferred the idea
that electrons were bosons. Pauli arrived at the realization that the electron fluid
is a degenerate Fermi gas with great reluctance, and at the end of 1925[2] gave
way, writing in a short note to Schrödinger that read

“With a heavy heart, I have decided that Fermi Dirac, not Einstein
is the correct statistics, and I have decided to write a short note on
paramagnetism.”

Wolfgang Pauli, letter to Schrödinger, November 1925[2].

2 Unsolved riddles of the 1930s

The period of condensed matter physics between the two world-wars was character-
ized by a long list of unsolved mysteries in the area of magnetism and
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Figure 1: Two mysteries of the early era, whose ultimate resolution 30 years later linked them
to profound new concepts about nature. (a) The Meissner effect, whose ultimate resolution led
to an understanding of superconductivity and the discovery of the Anderson-Higgs mechanism,
(b) The Kondo resistance minimum, which is linked to the physics of confinement.

superconductivity[3]. Ferromagnetism had emerged as a shining triumph of the
application of quantum mechanics to condensed matter. So rapid was the progress
in this direction, that Néel and Landau quickly went on to generalize the idea, pre-
dicting the possibility of staggered magnetism, or antiferromagnetism in 1933[4].
In a situation with many parallels today, the experimental tools required to real-
ize the predicted phenomenon, had to await two decades, for the development of
neutron diffraction[5]. During this period, Landau became pessimistic and came
to the conclusion that quantum fluctuations would most probably destroy antifer-
romagnetism, as they do in the antiferromagnetic 1D Bethe chain - encouraging
one of his students, Pomeranchuk, to explore the idea that spin systems behave as
neutral fluids of fermions[6].

By contrast, superconductivity remained unyielding to the efforts of the finest
minds in quantum mechanics during the heady early days of quantum mechanics
in the 1920s, a failure derived in part from a deadly early misconception about
superconductivity[3]. It was not until 1933 that a missing element in the puzzle
came to light, with the Meissner and Ochensfeld discovery that superconductors
are not perfect conductors, but perfect diamagnets.[7] It is this key discovery that
led the London brothers[8] to link superconductivity to a concept of “rigidity” in
the many-body electron wavefunction, a notion that Landau and Ginzburg were
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to later incorporate in their order parameter treatment of superconductivity[9].
Another experimental mystery of the 1930’s, was the observation of a mys-

terious “resistance minimum” in the temperature dependent resistance of copper,
gold, silver and other metals[10]. It took 25 more years for the community to
link this pervasive phenomenon with tiny concentrations of atomic size magnetic
impurities- and another 15 more years to solve the phenomenon - now known as
the Kondo effect- using the concepts of renormalization.

3 Many-Body Physics in the Cold War

3.1 Physics without Feynman diagrams

Many-body physics blossomed after the end of the second world war, and as the
political walls between the east and west grew with the beginning of the cold war,
a most wonderful period of scientific and conceptual development, with a frequent
exchange of new ideas across the iron curtain, came into being. Surprisingly, the
Feynman diagram did not really enter many-body physics until the early 60s,
yet without Feynman diagrams, the many-body community made a sequence of
astonishing advances in the 1950’s[11].
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Figure 2: Illustrating the Pines-Bohm idea, that the physics of the electron fluid can be divided
up into high energy collective “plasmon modes” and low energy electron quasiparticles.

The early 1950s saw the first appreciation by the community of the impor-
tance of collective modes. One of the great mysteries was why the non-interacting
Sommerfeld model of the electron fluid worked so well, despite the presence of in-
teractions that are comparable to the kinetic energy of the electrons. In a landmark
early paper, David Bohm and his graduate student, David Pines[12] realized that
they could separate the strongly interacting gas via a unitary transformation into
two well-separated sets of excitations- a high energy collective oscillations of the
electron gas, called plasmons, and low energy electrons. The Pines-Bohm paper is
a progenitor of the idea of renormalization: the idea that high energy modes of the
system can be successively eliminated to give rise to a renormalized picture of the
residual low energy excitations.
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Feynman diagrams entered many-body physics in the late 1950s[11]. The first
applications of the formalism of quantum field theory to the many-body physics
of bulk electronic matter, made by Brueckner[13], were closely followed by Gold-
stone and Hubbard’s elegant re-derivations of the method using Feynman diagrams
[14, 15]. A flurry of activity followed: Gell-Mann and Brueckner used the newly
discovered “linked cluster theorem” to calculate the correlation energy of the high
density electron gas[16], and Galitskii and Migdal[17, 18] in the USSR applied the
methods to the spectrum of the interacting electron gas. Around the same time,
Edwards[19] made the first applications of Feynman’s methods to the problem of
elastic scattering off disorder.

One of the great theoretical leaps of this early period was the invention of the
concept of imaginary time1. The earliest published discussion of this idea occurs in
the papers of Matsubara[20]. Matsubara noted the remarkable similarity between
the time evolution operator of quantum mechanics

U(t) = e−itH/h̄ (1)

and the Boltzmann density matrix

ρ(β) = e−βH = U(−ih̄β), (2)

where β = 1/(kBT ) and kB is Boltzmann’s constant. This parallel suggested that
one could convert conventional quantum mechanics into finite temperature quan-
tum statistical mechanics by using a time-evolution operator where real time is
replaced by imaginary time,

t→ −iτ h̄. (3)

Matsubara’s ideas took a further leap into the realm of the practical, when
Abrikosov, Gorkov and Dzyaloshinski (AGD) [21] showed that the method was
dramatically simplified by Fourier transforming the imaginary time electron Green
function into the frequency domain. They noted for the first time that the an-
tiperiodicity of the Green function G(τ + β) = −G(τ) meant that the continuous
frequencies of zero temperature physics are replaced by the discrete frequencies
ωn = (2n + 1)πT , that we now call the “Matsubara frequency”. In their paper,
the finite temperature propagator

G(ωn, ~p) = [iωn + µ− ε(~p)]−1 (4)

for the electron makes its first appearance.
Another great conceptual leap of the early cold war, was the development

of the concept of the “elementary excitation”, or “quasiparticle”, as a way to

1The key ideas of the imaginary time approach were certainly known to Kubo prior to the first
publication by Matsubara. P. W. Anderson recalls being shown the key ideas of this technique,
including the antiperiodicity of the Fermi Green function, by Kubo, Matsubara’s mentor, in 1954.
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understand the low-energy excitations of many-body systems. The idea of a quasi-
particle is usually associated with Landau’s pioneering work on the Fermi liquid,
which appeared in 1957. The basic concept of elementary excitation appears to
have been in circulation on both sides of the Iron Curtain throughout much of
the fifties. The term “quasiparticle” certainly appears in Boguilubov’s[22] paper
on the theory of superfluidity in 1947. However, Landau’s work on Fermi liquids
certainly added tremendous clarity to the quasiparticle idea. Landau[23], stimu-
lated by early measurements on liquid He-3, realized that interacting fermi gases
could be understood with the concept of “adiabaticity”- the notion that when
interactions are turned on adiabatically, the original single-particle excitations of
the Fermi liquid, evolve without changing their charge or spin quantum numbers,
into “quasiparticle” excitations of the interacting system. Today, Landau’s Fermi
liquid theory is the foundation for the modern “standard model” of the electron
fluid.

3.2 Broken Symmetry

Two monumental achievements of the cold-war era deserve separate mention:
the discovery of “broken symmetry” and the renormalization group. In 1937,
Landau[24] formulated the concept of broken symmetry- proposing that phase
transitions take place via the process of symmetry reduction, which he described in
terms of his order parameter concept. In the early fifties, Onsager and Penrose[25],
refined Landau’s concept of broken symmetry to propose that superfluidity could
be understood as a state of matter in which the two-particle density matrix

ρ(r, r′) = 〈ψ̂†(r)ψ̂(r′)〉 (5)

can be factorized:

ρ(r, r′) = ψ∗(r)ψ(r) + small terms (6)

where

ψ(r) =
√
ρse

iφ = 〈N − 1|ψ̂(r)|N〉. (7)

is the order parameter of the superfluid, ρs is the superfluid density and φ the phase
of the condensate. This concept of “off-diagonal long-range order” later became
generalized to fermi systems as part of the BCS theory of superconductivity[26, 27],
where the off-diagonal order parameter

F (x− x′) = 〈N − 2|ψ̂↓(x)ψ̂↑(x′)|N〉, (8)

defines the wavefunction of the Cooper pair.
Part of the inspiration for a state with off-diagonal long-range order in BCS

theory came from work by Tomonaga[29] involving a pion condensate around the
nucleus. Bob Schrieffer wrote down the BCS wavefunction while attending a many-
body physics meeting in 1956 at the Stephens Institute of Technology, in New
Jersey. In a recollection he writes[28]
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“While attending that meeting it occurred to me that because of
the strong overlap of pairs perhaps a statistical approach analogous to
a type of mean field would be appropriate to the problem. Thinking
back to a paper by Sin-itiro Tomonaga that described the pion cloud
around a static nucleon [29], I tried a ground-state wave function |ψ0〉
written as

|ψ0〉 =
∏
k

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉 (9)

where c†k↑ is the creation operator for an electron with momentum k
and spin up, |0〉 is the vacuum state, and the amplitudes uk and vk are
to be determined”.

One of the remarkable spin-offs of superconductivity, was that it led to an
understanding of how a gauge boson can acquire a mass as a result of symmetry
breaking. This idea was first discussed by Anderson in 1959[30], and in more detail
in 1964[31, 32], but the concept evolved further and spread from Bell Laboratories
to the particle physics community, ultimately re-appearing as the Higg’s mecha-
nism for spontaneous symmetry breaking in a Yang Mills theory. The Anderson-
Higgs mechanism is a beautiful example of how the study of cryogenics led to a
fundamentally new way of viewing the universe, providing a mechanism for the
symmetry breaking between the electrical and weak forces in nature.

Another consequence of broken symmetry concept is the notion of “gener-
alized rigidity”[33], a concept which has its origins in London’s early model of
superconductivity[8] and the two-fluid models of superfluidity proposed indepen-
dently by Tisza[34] and Landau[35], according to which, if the phase of a boson
or Cooper pair develops a rigidity, then it costs a phase bending energy

U(x) ∼ 1
2
ρs(∇φ(x))2, (10)

from which we derive that the “superflow” of particles is directly proportional to
the amount of phase bending, or the gradient of the phase

js = ρs∇φ. (11)

Anderson noted[33] that we can generalize this concept to a wide variety of bro-
ken symmetries, each with their own type of superflow (see table 1). Thus broken
translation symmetry leads to the superflow of momentum, or sheer stress, bro-
ken spin symmetry leads to the superflow of spin or spin superflow. There are
undoubtedly new classes of broken symmetry yet to be discovered.
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Table. 1. Order parameters, broken symmetry and rigidity.

Name Broken Symmetry Rigidity/Supercurrent

Crystal Translation Symmetry Momentum superflow
(Sheer stress)

Superfluid Gauge symmetry Matter superflow

Superconductivity E.M. Gauge symmetry Charge superflow

Ferro and Anti-ferromagnetism Spin rotation symmetry Spin superflow
(x-y magnets only)

Nematic Liquid crystals Rotation symmetry Angular momentum
superflow

? Time Translation Symmetry Energy superflow ?

3.3 Renormalization group

The theory of second order phase transitions was studied by Van der Waals in the
19th century, and thought to be a closed field[36]. Two events- the experimental
observation of critical exponents that did not fit the predictions of mean-field
theory[37, 38], and the solution to the 2D Ising model[39], forced condensed matter
physicists to revisit an area once thought to be closed. The revolution that ensued
literally shook physics from end to end, furnishing us with a spectrum of new
concepts and terms, such as

• scaling theory[40, 41, 42],

• universality- the idea that the essential physics at long length scales is in-
dependent of all but a handful of short-distance details, such as the dimen-
sionality of space and the symmetry of the order parameter.

• renormalization- the process by which short-distance, high energy physics is
absorbed by adjusting the parameters inside the Lagrangian or Hamiltonian.

• fixed points- the limiting form of the Lagrangian or Hamiltonian as short-
distance, high energy physics is removed
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• running coupling constant– a coupling constant whose magnitude changes
with distance,

• upper critical dimensionality- the dimension above which mean-field theory
is valid.

that appeared as part of the new “renormalization group”[43, 44, 45, 46]. The
understanding of classical phase transitions required the remarkable fusion of uni-
versality, together with the new concepts of scaling, renormalization and the ap-
plication of tools borrowed from quantum field theory. These developments are a
main stay of modern theoretical physics, and their influence is felt far outside the
realms of condensed matter.

One of the unexpected dividends of the renormalization group concept, in the
realm of many-body theory, was the solution of the Kondo effect: the condensed
matter analog of quark confinement. By the late fifties, the resistance minima in
copper, gold and silver alloys that had been observed since the 1930s[10], had
been identified with magnetic impurities, but the mechanism for the minimum
was still unknown. In the early 60’s, Jun Kondo[47] was able to identify this
resistance minimum, as a consequence of antiferromagnetic interactions between
the local moments and the surrounding electron gas. The key ingredient in the
Kondo model, is an antiferromagnetic interaction between a local moment and the
conduction sea, denoted by

HI = J~σ(0) · ~S (12)

~S is a spin 1/2 and ~σ(0) is the spin density of the conduction electrons at the origin.
Kondo[47] found that when he calculated the scattering rate τ−1 of electrons off
a magnetic moment to one order higher than Born approximation,

1
τ
∝ [Jρ+ 2(Jρ)2 ln

D

T
]2, (13)

where ρ is the density of state of electrons in the conduction sea and D is the
width of the electron band. As the temperature is lowered, the logarithmic term
grows, and the scattering rate and resistivity ultimately rises, connecting the re-
sistance minimum with the antiferromagnetic interaction between spins and their
surroundings.

A deeper understanding of this logarithm required the renormalization group
concept[48, 46, 49]. By systematically taking the effects of high frequency virtual
spin fluctuations into account, it became clear that the bare coupling J is replaced
by a renormalized quantity

Jρ(Λ) = Jρ+ 2(Jρ)2 ln
D

Λ
(14)

that depends on the scale Λ of the cutoff, so that the scattering rate is merely
given by 1/τ ∝ (ρJ(Λ))2|Λ∼T . The corresponding renormalization equation

∂Jρ

∂ ln Λ
= β(Jρ) = −2(Jρ)2 +O(J3) (15)
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contains a “negative β function”: the hallmark of a coupling which dies away at
high energies (asymptotic freedom), but which grows at low energies, ultimately
reaching a value of order unity when the characteristic cut-off is reduced to the
scale of the so called “Kondo temperature” TK ∼ De−1/J .

The “Kondo” effect is a manifestation of the phenomenon of “asymptotic
freedom” that also governs quark physics. Like the quark, at high energies the
local moments inside metals are asymptotically free, but at energies below the
Kondo temperature, they interact so strongly with the surrounding electrons that
they become screened or “confined” at low energies, ultimately forming a Landau
Fermi liquid[49]. It is a remarkable that the latent physics of confinement, hiding
within cryostats in the guise of the Kondo resistance minimum, remained a mystery
for more than 40 years, pending purer materials, the concept of local moments and
the discovery of the renormalization group.

3.4 The concept of Emergence

The end of the cold-war period in many-body physics is marked by Anderson’s
statement of the concept of emergence. In a short paper, originally presented as
part of a Regent’s lecture entitled “More is different” at San Diego in the early
seventies[50], Anderson defined the concept of emergence with the now famous
quote

“at each new level of complexity, entirely new properties appear,
and the understanding of these behaviors requires research which I
think is as fundamental in its nature as any other.”

Anderson’s quote underpins a modern attitude to condensed matter physics-
the notion that the study of the collective principles that govern matter is a frontier
unto itself, complimentary, yet separate to those of cosmology, particle physics and
biology.

4 Condensed Matter Physics in the New Era

4.1 New States of Matter

By the end of the 1970’s few condensed matter physicists had really internalized
the consequences of emergence. In the early eighties, most members of the commu-
nity were for the most part, content with a comfortable notion that the principle
constraints on the behavior and possible ground-states of dense matter were al-
ready known. Superconductivity was widely believed to be limitedto below about
25K[51]. The “vacuum” state of metallic behavior was firmly believed to be the
Landau Fermi liquid, and no significant departures were envisaged outside the
realm of one-dimensional conductors. Tiny amounts of magnetic impurities were
known to be anathema to superconductivity. These principles were so entrenched
in the community that the first observation[52] of heavy electron superconductivity
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in the magnetic metal UBe13 was mis-identified as an artifact, delaying acceptance
of this phenomenon by another decade. By the end of the 80’s all of these popu-
larly held principles had been exploded by an unexpected sequence of discoveries,
in the areas of heavy electron physics, the quantum Hall effect and the discovery
of high temperature superconductivity.

e-
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-e -e

Figure 3: Illustrating the binding of two vortices to each electron, to form the ν = 1/3 Laughlin
ground-state.

4.1.1 Fractional Quantum Hall Effect

In the 1930’s Landau had discussed the quantum mechanics of electron motion
in a magnetic field[53], predicting the quantization of electron kinetic energy into
discrete Landau levels

h̄2(k2
x + k2

y)
2m

→ h̄eB

m
(n+

1
2
), (n = 0, 1, 2 . . . ). (16)

Landau quantization had been confirmed in metals, where it produces oscillations
in the field-dependent resistivity (Shubnikov de Haas oscillations) and magneti-
zation (de Haas van Alphen oscillations), and the field was thought mature. In
the seventies, advances in semiconductor technology and the availability of high
magnetic fields, made it possible to examine two dimensional electron fluids at
high fields, when the spacing of the Landau levels is so large that the electrons
drop into the lowest Landau level, so that their dynamics is entirely dominated
by mutual Coulomb interactions. Remarkably, the Hall constant of these electron
fluids was found to be quantized with values RH = V

I = h
νe2 , where at lower fields,

ν = 1, 2, 3 . . . is an integer, but at higher fields, ν acquires a fractionally quantized
values ν = 1/3, 1/5, 1/7 . . . . Laughlin[54] showed that the fractional quantum
Hall effect is produced by interactions, which stabilize a new type of electron fluid
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where the Landau level has fractional filling factor ν = 1/(2M + 1). In Laugh-
lin’s approach, the electron fluid is pierced by “vortices” which identify zeroes in
the electron wavefunction. Laughlin proposed that electrons bind to these vor-
tices to avoid other electrons, and he incorporated this physics into his celebrated
wavefunction by attaching each electron to an even number 2M of vortices.

Ψ({zi}) =
∏
i>j

(zi − zj)2M+1 exp

[∑
i

|zi|2/4l2o
]

(17)

where lo =
√
h̄/eB is the magnetic length. The excitations in this state are

gapped, with both fractional charge and fractional statistics: an entirely new elec-
tronic ground state. Moreover, the wavefunction is robust against the details of
the Hamiltonian from which it is derived.

This break-through opened an entire field of investigation[55, 56] into the
new world of highly correlated electron physics, bringing a whole range of new
concepts and language, such as

• fractional statistics quasiparticles-

• composite fermions-

• Chern-Simons terms.

Equally importantly, the fractional quantum Hall effect made the community
poignantly aware of the profound transformations that become possible in elec-
tronic matter when the strength of interactions becomes comparable to, or greater
than the kinetic energy.

4.1.2 Heavy Electron Physics

The discovery of heavy electron materials in the late seventies[57, 58] forced con-
densed matter physicists to severely revise their understanding about how local
moments interact with the electron fluid. In the late seventies, electron behavior
in metals was neatly categorized into

1. “delocalized” behavior, where electrons form Bloch waves, and

2. “localized” behavior, where the electrons in question are bound near a par-
ticular atom in the material. Such unpaired spins form tiny atomic magnets
called “local moments” that tend to align at low temperatures and are ex-
tremely damaging to superconductivity.

Heavy fermion metals completely defy these norms, for they contain a dense array
of magnetic moments, yet instead of magnetically ordering the moments develop a
highly correlated paramagnetic ground-state with the conduction electrons. When
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this happens, the resistivity of the metal drops abruptly, forming a highly corre-
lated Landau Fermi liquid in which electron masses rise in excess of 100 times the
bare electron mass[59].

Heavy electron physics is, in essence the direct descendant of the resistance
minimum physics first observed in simple metals in the early 1930’s. Our cur-
rent understanding of heavy fermions is based on the notion, due to Doniach[60],
that the “Kondo effect” seen for individual magnetic moments, survives inside the
dense magnetic arrays of heavy fermion compounds to produce the heavy fermion
state. The heavy electrons that propagate in these materials are really the direct
analogs of nucleons formed from confined quarks. Curiously, one of the most use-
ful theoretical methods for describing these systems was borrowed from particle
physics. Heavy electrons are formed in f -orbitals which are spin-orbit coupled with
a large spin degeneracy N = 2j + 1. One of the most useful methods for devel-
oping a mean-field description of the heavy electron metal is the 1/N expansion,
inspired by analogies with the 1/N expansion in the spherical model of statisti-
cal mechanics[61] and the 1/N expansion in the number of colors in Quantum
Chromodynamics[62, 63, 64, 65]. Here the basic idea is that 1/N plays the role of
an effective Planck’s constant

1
N

∼ h̄eff , (18)

so that as N →∞, certain operators, or combinations of operators in the Hamil-
tonian behave as new classical variables. The physics can then be solved in the
large N limit as a special kind of classical physics, and the corrections to this limit
are then expanded in powers of 1/N . In this way much of the essential physics of
the heavy electron paramagnet is captured as a semi-classical expansion around a
new class of mean-field theory, where the width of the heavy electron band plays
the role of an order parameter.

4.1.3 High Temperature Superconductivity

The discovery of high temperature superconductivity, with transition tempera-
tures that have spiraled way above the theoretically predicted maximum possible
transition temperatures, to its current maximum of 165K, stunned the physics
community. These systems are formed by adding charge to an insulating state
where electrons are localized in an antiferromagnetic array. Several aspects of these
materials radically challenge our understanding of correlated electron systems, in
particular:

• The close vicinity between insulating and superconducting behavior in the
phase diagram, which suggests that the insulator and superconductor may
derive from closely related ground-state wavefunctions[66, 67].

• The “strange metal” behavior of the optimally doped materials. Many prop-
erties of this state tell us that it is not a Landau Fermi liquid, such as the
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linear resistivity

ρ = ρo +AT (19)

extending from the transition temperature, up to the melting temperature.
This linear resistivity is known to originate in an electron-electron scattering
rate Γ(T ) ∼ kBT , that grows linearly with temperature, which has been
called a “marginal Fermi liquid” [68]. In conventional metals, the inelastic
scattering rate grows quadratically with temperature. Despite 15 years of
effort, the origin of the linearity of the scattering rate remains a mystery.

• The origin of the growth of a pseudogap in the electron spectrum for “under-
doped” superconductors. This soft gap in the excitation spectrum signals the
growth of correlations amongst the electrons prior to superconductivity, and
some believe that it signals the formation of pairs, without coherence[69].

The radical simplicity of many of the properties of the cuprate superconductors
leads many to believe that their ultimate solution will require a conceptually new
description of the interacting electron fluid.

* Γ ∼ max(T,E)tr

ρ ∼   
Marginal Fermi Liquid

T

AFM SC

T
T

xx=0.19

Hidden order? 

QCP?

Liquid?
Fermi

PSEUDO-
GAP

Figure 4: Schematic phase diagram for cuprate superconductors, where x is doping and T the
temperature, showing the location of a possible quantum critical point.

The qualitative phase diagram is shown in Fig(4), showing three distinct
regions- the over-doped region, the fan of “marginal Fermi liquid behavior” and
the under-doped region. The theoretical study of this phase diagram has proven
to be a huge engine for new ideas, such as

• Spin charge separation- the notion that the spin-charge coupled electron
breaks up into independent collective charge and spin excitations, as in one
dimensional fluids.
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• Hidden order- the notion that the pseudo-gap is a consequence of the for-
mation of an as-yet unidentified order parameter, such as orbital magnetism
(d-density waves)[70, 71] or stripes[72].

• Quantum criticality- the notion that the strange-metal phase of the cuprates
is a consequence of a “quantum critical point” around a critical doping of
about xc ∼ 0.2[73] In this scenario, the pseudo-gap is associated with the
growth of “hidden order” and marginal Fermi liquid behavior is associated
with the quantum fluctuations emanating from the quantum critical point.

• Pre-formed pairs- the idea that the under-doped pseudo-gap region of the
phase diagram is a consequence of the formation of phase-incoherent pairs
which form at the pseudo-gap temperature[69].

• Resonating Valence Bonds- the idea that superconductivity can be regarded
as a fluid of spinless charged holes, moving in a background of singlet spin
pairs.[66]

• New forms of gauge theory, including Z2[74], SU(2)[75] and even supersym-
metric gauge theories[76] that may describe the manifold of states that is
highly constrained by the strong coulomb interactions between electrons in
the doped Mott insulator.

Many of these ideas enjoy some particular realization in non-cuprate materials,
and in this way, cuprate superconductivity has stimulated a huge growth of new
concepts and ideas in many-body physics.

4.2 Quantum Criticality

The concept of quantum criticality: the idea that a zero temperature phase transi-
tion will exhibit critical order parameter fluctuations in both space and time, was
first introduced by John Hertz during the hey-days of interest in critical phenom-
ena, but was regarded as an intellectual curiosity.[77] Discoveries over the past
decade and a half have revealed the ability of zero-temperature quantum phase
transitions to qualitatively transform the properties of a material at finite tem-
peratures. For example, high temperature superconductivity is thought to be born
from a new metallic state that develops at a certain critical doping in copper-
perovskite materials.[73] Near a quantum phase transition, a material enters a
weird state of “quantum criticality”: a new state of matter where the wavefunc-
tion becomes a fluctuating entangled mixture of the ordered, and disordered state.
The physics that governs this new quantum state of matter represents a major
unsolved challenge to our understanding of correlated matter.

A quantum critical point (QCP) is a singularity in the phase diagram: a
point x = xc at zero-temperature where the characteristic energy scale kBTo(x) of
excitations above the ground-state goes to zero. (Fig. 5.).[78, 79, 80, 81, 82, 84] The
QCP affects the broad wedge of phase diagram where T > To(x). In this region
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of the material phase diagram, the critical quantum fluctuations are cut-off by
thermal fluctuations after a correlation time given by the Heisenberg uncertainly
principle

τ ∼ h̄

kBT
. (20)

As a material is cooled towards a quantum critical point, the physics probes
the critical quantum fluctuations on longer and longer time-scales. Although the
“quantum critical” region of the phase diagram where T > To(x) is not a strict
phase, the absence of any scale to the excitations other than temperature itself
qualitatively transforms the properties of the material in a fashion that we would
normally associate with a new phase of matter.

(T)

T

ρ

Critical Point

0
AFM

Heavy electrons

xc x

T
� � �h=kBT

To(x)

� � �h=kBT !1

Quantum Critical Point

Figure 5: Quantum criticality in heavy electron systems. For x < xc spins become ordered
for T < To(x) forming an antiferromagnetic Fermi liquid ; for x > xc, composite bound-states
form between spins and electrons at T < T0(x) producing a heavy Fermi liquid. “Non-Fermi
liquid behavior”, in which the characteristic energy scale is temperature itself, and resistivity is
quasi-linear, develops in the wedge shaped region between these two phases. The nature of the
critical Lagrangian governing behavior at xc is currently a mystery.

Quantum criticality has been extensively studied in heavy electron materials,
in which the antiferromagnetic phase transition temperature can be tuned to zero
by the application of a pressure, field or chemical doping. Close to quantum criti-
cality, these materials exhibit a number of tantalizing similarities with the cuprate
superconductors[84]:

• a predisposition to form anisotropic superconductors,

• the formation of a strange metal with quasi-linear resistivity in the critical
region
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• the appearance of temperature as the only scale in the electron excitation
spectrum at criticality, reminiscent of “marginal Fermi liquid behavior”

Hertz proposed that quantum criticality could be understood by extending classi-
cal criticality to order parameter fluctuations in imaginary time, using a Landau
Ginzburg functional that includes the effects of dissipation:

F =
∫ 1/T

0

dτ

∫
ddx

{|(∇+ iQo)ψ|2 + ξ−2|ψ|2 + U |ψ|4} + FD (21)

where Qo is the ordering vector of the antiferromagnet, ξ the correlation length
which vanishes at the QCP and

FD =
∑
iνn

∫
d3q

(2π)3
|ψ(q, νn)|2 |νn|

Γq
, (ν = 2nπT ) (22)

is a linear damping rate derived from the density of particle-hole excitations in the
Fermi sea. An important feature of this “φ4” Lagrangian is that the momentum
dependence enters with twice the power of the frequency dependence, the time
dimension counts as z = 2 space dimensions, and the effective dimensionality of
the theory is

D = d+ z = d+ 2, (23)

so that D = 5 for the three dimensional model, pushing it above its upper critical
dimension.

In heavy electron materials, there is a growing sense that the Hertz approach
can not explain the physics of quantum criticality. Many of the properties of the
QCP, such as the appearance of non-trivial exponents in the quantum spin cor-
relations, with T as the only energy scale, suggest that the underlying critical
Lagrangian lies beneath its critical dimension. Also, all experiments indicate that
the energy spectrum of the quasiparticles in the Landau Fermi liquid either side
of the QCP, telescopes to zero, driving the masses of quasiparticle excitations to
infinity, and pushing the characteristic Fermi temperature to zero at the quantum
critical point. Yet the Hertz model predicts that most the electron quasiparticle
masses should remain finite at an antiferromagnetic QCP.

This has led some to propose that unlike classical criticality, we can not use
Landau Ginzburg theory as a starting point for an examination of the fluctuations:
a new mean-field theory must be found. One of the ideas of particular interest,
is the idea of “local quantum criticality”, whereby the quantum fluctuations of
the spins become critical in time, but not space at a QCP[83]. Another idea, is
that at a heavy electron quantum critical point, the heavy electron quasiparticle
disintegrates into separate spin and charge degrees of freedom. Both ideas require
radically new kinds of mean-field theory, raising the prospect of a discovery of a
wholly new class of critical phenomena[84].

I should add that Chapline and Laughlin have suggested that quantum crit-
icality may have cosmological implications, proposing that the event horizon of a
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black hole might be identified with a quantum critical interface where the char-
acteristic scales of particle physics might, in complete analogy with condensed
matter, telescope to zero[85].

2
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Figure 6: The “axis of complexity”.

5 The nature of the Frontier

This article has tried to illustrate how condensed matter physics has had a central
influence in the development of our ideas about collective matter, both in the lab,
and on a cosmological scale. Many simple phenomena seen in the cryostat, illus-
trate fundamentally new principles of nature that recur throughout the cosmos.
Thus, the discovery of superconductivity and the Meissner effect has contributed
in a fundamental way to our understanding of broken symmetry and the Anderson
Higg’s mechanism. In a similar way, the observation of the resistance minimum in
copper, provides an elementary example of the physics of confinement, and required
an understanding of the principles of the renormalization group for its understand-
ing. The interchange between the traditional frontiers- and the emergent frontier
of condensed matter physics is as live today, as it has been over the past four
decades- for example- insights into conformal field theory gained from the study of
2D phase transitions[86] currently play a major role in the description of D-brane
solitons[87] in superstring theory. In the future, newly discovered phenomena, such
as quantum criticality are likely to have their cosmological counterparts as well.

One way of visualizing the frontier, is to consider that in the periodic table,
there are about 100 elements. As we go out along the complexity axis (Fig. 6),
from the elements to the binary, tertiary and quaternary compounds, the num-
ber of possible ordered crystals exponentiates by at least a factor of 100 at each
stage, and with it grows the potential for discovery of fundamentally new states of
matter. Only two years ago- a new high temperature superconductor MgB2 was
discovered amongst the binary compounds- and the vast phase space of quaternary
compounds has barely been scratched by the materials physicist. This is a fron-
tier of exponentiating possibilities, forming a glorious continuum spanning from
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the simplest collective properties of the elements, out towards the most dramatic
emergent phenomenon of all- that of life itself.

Curiously, this new frontier continues to preserve its links with technology and
applications. During the past four decades, the size of semi-conductor memory has
halved every 18 months, following Moore’s law[88]. Extrapolating this unabated
trend into the future, sometime around 2020, the number of atoms required to
store a single bit of information will reach unity, forcing technology into the realm
of the quantum. Just as the first industrial revolution of the early 19th century
was founded on the physical principles of thermodynamics, and the wireless and
television revolutions of the 20th century were built largely upon the understanding
of classical electromagnetism, we can expect that technology of this new century
will depend on the new principles- of collective and quantum mechanical behavior
that our field has begun, and continues to forge today.
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[84] P. Coleman, C. Pépin, Qimiao Si and Revaz Ramazashvili, J. Phys. Cond.
Matt. 13 273 (2001).

[85] G. Chapline and R.B. Laughlin, in “Artificial Black Holes” 179–98, (World
Scientific) (2002).

[86] J.L. Cardy, “Operator Content of Two-Dimensionally Conformally Invariant
Theories”, Nucl. Phys. B270, 186–204 (1986).

[87] A. Strominger and C. Vafa, “Microscopic Origin of the Bekenstein-Hawking
Entropy”, Phys. Lett. B379, 99–104 (1996).

[88] G.E. Moore, Electronics 38, 114–117 (1965).

Piers Coleman
Center for Materials Theory
Rutgers University
Piscataway, NJ 08855, U.S.A.


