
682A. Solutions to Exercises II. April 2015

1. Carry out a Hubbard Stratonovich transformation for the following interaction Hamiltonians, fac-
torizing the terms in brackets, and write one or two sentences interpreting the effective Hamiltonian
that it gives rise to

(a)

HI = −g
∫

d3x(ψ†↑(x)ψ†↓(x))(ψ↓(x)ψ↑(x))

→

∫
d3x

[
∆̄(x)(ψ↓(x)ψ↑(x)) + (ψ†↑(x)ψ†↓(x))∆(x) +

∆̄(x)∆(x)
g

]
. (1)

This is the “local” version of the BCS Hamiltonian introduced by Gorkov. It is useful if one
wants to consider non-uniform (such as a phase-twisted) solutions.

(b)

HI = −
JH

2

∑
(i, j),σ,σ′

(
f †iσ f jσ

) (
f † jσ′ fiσ′

)
→

∑
(i, j)σ

[(
f †iσ f jσ

)
∆i j + ∆̄i j

(
f † jσ fiσ

)
+ 2

∆̄i j∆i j

JH

]
. (2)

This mean-field decoupling is often used to describe spin-liquids. The original Hamiltonian
does not change the charge n f (i) at each site. The decoupled Hamiltonian develops a gauge
symmetry f jσ → eiφ j f jσ, ∆i j → ei(φi−φ j)∆i j which protects the charge conservation at each site.

(c)

HI = −
J
2

∑
α,β

(
ψ†αbα

) (
b†βψβ

)
→

∑
σ

[(
ψ†σbσ

)
α + ᾱ

(
b†σψσ

)
+ 2

ᾱα

J

]
(3)

This is an unusual Hubbard Stratonovich transformation, because the decoupling field is a
Grassman. This field never condenses, so that the above interaction has to be treated beyond
mean-field theory at the level of Gaussian fluctuations.

2. The interaction between an electron gas and the potential field is given by

S EM =

∫ β

0
dτ

∫
d3x

[
eρ(x)φ(x) −

ε0(∇φ)2

2

]
(4)

(My apologies - there was a sign error infront of the eρ(x). )
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(a) Write down the path integral for a Coulomb gas of quantum electrons, involving an integral
over the electron and potential fields.
The path integral takes the form

Z =

∫
D[ψ̄, ψ, φ]e−S

S =

∫
dτd3x

[
ψ̄(x)

(
∂τ −

∇2

2m
+ eφ(x) − µ

)
ψ(x) − ε0

(∇φ)2

2

]
. (5)

(b) What equation does the potential φ satisfy at the saddle point of this path integral?
The effective action is determined by the equation

e−S e f f [φ] =

∫
D[ψ̄, ψ]e−S [ψ̄,ψ,φ] (6)

We can obtain the equation of motion for φ by differentiating this expression with respect to φ,
as follows:

δS e f f

δφ(x)
= −

δ ln Z
δφ(x)

=
1
Z

∫
D[ψ̄, ψ]

[
eρ(x) + ε0∇

2φ(x)
]

e−S = 0 (7)

so that the saddle point solution satisfies Gauss’ law

−∇2φ =
eρ(x)
ε0

(8)

or ∇ · ~E = eρ/ε0.

(c) Why is the coefficient of the (∇φ)2 term negative? (Give a physical interpretation).
At first sight, this seems strange, because the last term in the action is minus one times the
electromagnetic field energy: i.e minus one times the Coulomb energy! When we write the
potential energy as eρφ we overcount the Coulomb energy by a factor of two. The negative
correction term not only establishes Gauss’s law as the saddle point, it also corrects for the
overcounting.
If you eliminate the particle density in terms of the potential, what is the energy density asso-
ciated with the resulting electric field ~E = −~∇φ?
The answer to this question helps to explain the explanation just given above. If we insert the
solution to Gauss’s law into the total energy, replacing eρ(x) = −ε0∇

2φ, we obtain

S EM =

∫
d3x


→ε0(∇φ)2︷    ︸︸    ︷
−ε0φ∇

2φ−εo
(∇φ)2

2


=

∫
d3x

[
εo

(∇φ)2

2

]
(9)

which is precisely the classical electric field energy, or Coulomb energy.
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(d) Write down the effective action of the system when the fermions have been integrated out and
interpret your result in terms of Feynman diagrams.
The effective action is given by

Fe f f = −T ln Det


−G−1︷         ︸︸         ︷

∂τ −
∇2

2m
− µ+eφ

 −
1
β

∫
d3xdτε0

(∇φ)2

2
(10)

We can expand the logarithm as a power-series in the scattering potential as

F = −TTr ln[−G−1 + eφ] −
1
β

∫
d3xdτε0

E2

2

= −TTr ln[−G−1] − TTr ln[1 −Geφ] −
1
β

∫
d3xdτε0

E2

2

= −TTr ln[−G−1] −
1
β

∫
d3xdτε0

E2

2
+

∑
n

1
n

TTr
[
(Geφ)n] (11)

We can interpret the last term as the sum of loop diagrams for repeated scattering off the
potential field φ(x).

−TTr ln[1 −G(eφ)] = −

(e) Suppose the potential field acquires a “mass” term:

S EM =

∫ β

0
dτ

∫
d3x

[
−eρ(x)φ(x) − ε0

φ(−∇2 + κ2)φ
2

]
(12)

What form does S EM take (in real space) when one integrates out the potential field?
The electromagnetic part of the action can be written in the short-hand

S EM = eρ · φ +
φ · M · φ

2

where M ≡ ε0(∇2 − κ2) ≡ ε0(−q2 − κ2) in Fourier space. If we carry out the Gaussian integral
over φ this gives

S EM → −
1
2

eρ · M−1 · eρ

or written out more explicitly

S EM =
1
2

∫
dτd3xd3x′e2ρ(x)

[
1

ε0(κ2 − ∇2)

]
x−x′

ρ(x′) (13)
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Now
1

ε0(κ2 − ∇2)
→

1
ε0(q2 + κ2)

→
1

4πε0

e−κr

r
so the final action corresponds to fermions interacting with a Yukawa potential.

S =

∫
dτ

[∫
d3x ψ†

(
∂τ −

∇2

2m
− µ

)
ψ +

1
2

∫
d3xd3x′V(x − x′) : ρ(x)ρ(x′) :

]
(14)

where

V(x − x′) =
1

4πε0

e−κ|x−x′ |

|x − x′|
.

3. Consider the Euclidean action for a single Harmonic oscillator

S E =

∫ β

0
dτ [ā (∂τ + ω) a]

(a) By re-writing the fields a and ā in terms of their momentum and position co-ordinates derive

the action in terms of p and x. (Hint: terms like
∫

dτx∂τx =
1
2

∫
dτ∂τ(x2) = 0 vanish because

they are perfect differentials of functions periodic in β).
If we substitute

a =

√
ω

2
(x + i

p
ω

),

ā =

√
ω

2
(x − i

p
ω

), (15)

then, ∫ β

0
ā(∂τ + ω)a =

ω

2

∫ β

0
(x − i

p
ω

)(∂τ + ω)(x + i
p
ω

)

=
1
2

∫ β

0

[
ωxẋ +

1
ω

pṗ − i(pẋ − xṗ) + ω2x2 + p2
]

=

=0︷                       ︸︸                       ︷[
ω

4
x2 +

1
4ω

p2 +
i
2

xp
]β

0
+

1
2

∫ β

0
dτ

[
−ipẋ + H(p, x)

]
=

1
2

∫ β

0
dτ

[
−ipẋ + H(p, x)

]
(16)

where the exact integrand appearing on line 3 is eliminated due to periodic boundary condi-

tions, and H(p, x) =
p2

2
+
ω2

2
x2 is the Hamiltonian
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(b) Carry out the Gaussian integral over the momentum field p and derive the corresponding action
in terms of ẋ and x.
If we integrate the action over momentum, then∫

dτp(−iẋ) +
p2

2
→ −

∫
dτ(−iẋ)2 =

∫
dτ

ẋ2

2
(17)

so the final action is

S =

∫ β

0
dτ

(
ẋ2

2
+
ω2x2

2

)
. (18)

4. Mean field theory for antiferromagnetic Spin Density Wave Develop the mean-field theory for a
three dimensional tight-binding cubic lattice with commensurate antiferromagnetic order parameter

M j = MeiQ·R j (19)

where Q = (π, π, π).

(a) Show that the mean-field free energy can be written in the form

HMF =
∑

k∈ 1
2 BZ

ψ†k

(
εk − µ M · ~σ
M · ~σ εk+Q − µ

)
ψk +Ns

M2

2I
(20)

where M = |M| is the magnitude of the staggered mangetization, ψk denotes the four-component
spinor

ψk =


ck↑
ck↓

ck+Q↑
ck+Q↓

 , (21)

εk = −2t(cx +cy +cz), (cl ≡ cos kl, l = x, y, z) is the kinetic part of the energy and the summation
is restricted to the magnetic Brillouin zone, (One half the original Brillouin zone.)
The action for the electrons moving in the Weiss field is given by

S =

∫
dτ

∑
k

c†k (∂τ + εk − µ) ck

 +
∑

j

 ~M j · (c† j~σc j) +
~M2

j

2I

 (22)

from which we can read off the mean-field Hamiltonian

HMF =
∑

k

(εk − µ)c†kck +
∑

j

 ~M j · (c† j~σc j) +
~M2

j

2I

 (23)
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If we now substitute
~M j = ~Mei ~Q·~R j (24)

where ~Q = (π, π, π), then

HMF =
∑

k

(εk − µ)c†kck +
∑

k

~M · (c†k+Q~σck) +Ns

~M2

2I
. (25)

Dividing the Brillouin zone into two halves, we obtain

HMF =
∑

k∈ 1
2 BZ

[
(εk − µ)c†kck + (εk+Q − µ)c†k+Qck+Q +

(
~M · (c†k+Q~σck) + H.c

)]
+Ns

~M2

2I

=
∑

k∈ 1
2 BZ

ψ†k

(
εk − µ M · ~σ
M · ~σ εk+Q − µ

)
ψk +Ns

M2

2I
. (26)

(b) On a tight binding lattice the kinetic energy has the “nesting” property that εk+Q = −εk. Show
that the energy eigenvalues of the mean-field Hamiltonian have a BCS form

Ek± = ±

√
ε2

k + M2 − µ. (27)

For a nested Fermi surface, the mean-field Hamiltonian becomes

HMF =
∑

k∈ 1
2 BZ

ψ†kh(k)ψk +Ns
M2

2I
. (28)

where the matrix hamiltonian

h(k) =

(
εk − µ M · ~σ
M · ~σ −εk − µ

)
= εkτ3 + ~M · ~στ1 − µ1 (29)

where the four dimensional Nambu matrices are

τ3 =

(
1 0
0 −1

)
, ~στ1 =

(
0 ~σ
~σ 0

)
. (30)

The quasiparticle energies are determined by the eigenvalues of h(k). We can determine these
from

Det[E − (εkτ3 − ~M · ~στ1 + µ)] = 0 (31)

We can determine the eigenvalues by squaring the determinant, to obtain

Det
[(

E − (εkτ3 − ~M · ~στ1 + µ)
) (

E + (εkτ3 + ~M · ~στ1 + µ)
)]

= Det
[
(E + µ)2 − (ε2

k + ~M2)
]
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(where we have used the fact that τ3 anticommutes with ~στ1). From this, we see that

Ekp = −µ ±

√
ε2

k + ~M2 (32)

Note that in the half Brillouin zone, each of the corresponding eigenstates has a two-fold spin
degeneracy.

(c) Show that the mean-field free energy takes the form

F =
∑

k,p=±1

−T ln
[
2 cosh

(
βEkp

2

)]
+Ns

(
M2

2I
− 2µ

)
(33)

From the energy eigenstates, we see that the mean-field Free energy is given by

F = −2T
∑

k∈ 1
2 BZ,p=±

ln(1 + e−βEkp) +Ns

~M2

2I
(34)

where the factor of two is from the two-fold spin degeneracy of the states. We can expand the
summation to the full Brillouin zone by dividing the first term by two,

F = −T
∑

k∈BZ,p=±

ln(1 + e−βEkp) +Ns

~M2

2I

= −T
∑
k∈BZ

ln
[
(1 + e−βEk+)(1 + e−βEk−)

]
+Ns

~M2

2I
(35)

Now with a bit of algebra, we deduce that

(1 + e−βEk+)(1 + e−βEk−) = (1 + e−β(−µ+
√

))(1 + e−β(−µ−
√

))

= e−
β
2 (−µ+
√

)e−
β
2 (−µ−
√

)4 cosh
(
βEk+

2

)
cosh

(
βEk−

2

)
= eβµ4 cosh

(
βEk+

2

)
cosh

(
βEk−

2

)
(36)

so we can write the mean field Free energy in the form

F =
∑

k,p=±

[
−T ln cosh

(
βEkp

2

)
−
µ

2

]
+Ns

~M2

2I

=
∑

k,p=±1

−T ln
[
2 cosh

(
βEkp

2

)]
+Ns

(
M2

2I
− µ

)
(37)
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Note the factor of two difference with the question - a typo in the original form. We can check
that the above form is the correct one, by differentiating w.r.t µ to get the total particle number

N = −
∂F
∂µ

=
∑

k,p=±

= −
1
2

tanh
(
βEkp

2

)
+Ns

=
∑

k,p=±

1
2

(
1 − tanh

(
βEkp

2

))
=

∑
k,p=±

f (Ekp) (38)

(d) Differentiating the mean-field Free energy w.r.t ~M, we obtain

1
Ns

∂F

∂ ~M
= −

∫
k

tanh
(
βEkp

2

)
~Mp

2
√
ε2

k + M2
+
~M
I

= 0 (39)

from which we obtain

1
2

∑
k,p=±1

tanh


√
ε2

k + M2 − µp

2T

 1√
ε2

k + M2
=

1
I
. (40)

(e) Show that at half filling, the nesting guarantees that a transition to a spin-density wave will
occur for arbitrarily small interaction strength I.
The gap equation at T = 0 is given by∑

k,p

sgn(pEkp)

2
√
ε2

k + M2
=

1
I
. (41)

If we set M = 0, we obtain the critical I = Ic for an instability into the antiferromagnet,

1
Ic

=
∑
k,p

sgn(|εk| − pµ)
2|εk|

=
∑

p

∫ Λ

−Λ

dεN(ε)
sgn(|ε | − pµ)

2|ε |

=
∑

p

∫ Λ

0
dεN(ε)

sgn(|ε | − pµ)
|ε |

= 2
∫ Λ

µ

dε
ε

∼ 2N(0) ln
(
Λ

µ

)
(42)
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where we have replaced the integral over k by an integral over the density of states, introducing
a cutoff Λ. To extract the infra-red divergence in the integral, we have replaced the density of
states per spin by its value at ε = 0, N(0). The critical value Ic is then given by

2IcN(0) ∼
1

ln
(

Λ
µ

) (43)

a quantity that goes to zero as µ→ 0. In other words, the critical value of Ic is zero at particle-
hole symmetry.

(f) Calculate the [zero temperature] phase diagram assuming that the order remains commensurate
at finite doping.
A precise answer to this question would plot out the Tc versus doping, determined from the
two equations

1 + δ =
∑
p=±

∫
d3k

(2π)3 f (Ek,p),

where δ is the doping away from half filling and

∑
p=±1

∫
d3k

(2π)3 tanh


√
ε2

k + M2 − µp

2T

 1

2
√
ε2

k + M2
=

1
I
.

However, lets do it heuristically for the moment. Lets look first at the zero temperature phase
diagram, plotting Ic as a function of doping away from half-filling. If the doping is δ = 2µN(0),
then we have

2IcN(0) ∼
1

ln
(

2ΛN(0)
δ

)
Putting 2N(0) ∼ 1/εF , where εF is the Fermi energy, we obtain

Ic ∼
εF

ln
(

(Λ/εF )
δ

) .
We can estimate Tc by writing

2IcN(0) ∼
1

ln
(

Λ
Tc

)
or

Tc ∼ Λe−1/2IcN(0)

Its probably just as good to sketch the phase diagram. However, as an exercise I worked out the
phase boundary in mathematica, as shown below. Notice that my finite grid size in integration
has eliminated the region near I = 0 and δ = 0. With some work this could have been fixed,
but I drew the lines in by hand.
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Figure 1: Phase boundary for antiferromagnet as a function of doping, calculated in mean field theory. All
units with t = 1.
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