
682A. Exercises 2. Due Mar 23rd

1. Carry out a Hubbard Stratonovich transformation for the following interaction Hamiltonians, fac-
torizing the terms in brackets, and write one or two sentences interpreting the effective Hamiltonian
that it gives rise to

(a) An attractive interaction between particles in a superconductor

HI = −g
∫

d3x(ψ†↑(x)ψ†↓(x))(ψ↓(x)ψ†↑(x))

(b) In a “spin liquid” with antiferromagnetic interaction written

HI = −
JH

2

∑
(i, j),σ,σ′

(
f †iσ f jσ

) (
f † jσ′ fiσ′

)
(c) A “Kondo interaction” between a conduction electron field ψα and a boson field bα

HI = −
J
2

∑
α,β

(
ψ†αbα

) (
b†βψβ

)
.

(Beware b†βψβ is a fermionic combination.)

2. The interaction between an electron gas and the potential field is given by

S EM =

∫ β

0
dτ

∫
d3x

[
−eρ(x)φ(x) −

ε0(∇φ)2

2

]
(1)

(a) Write down the path integral for a Coulomb gas of quantum electrons, involving an integral
over the electron and potential fields.

(b) What equation does the potential φ satisfy at the saddle point of this path integral?

(c) Why is the coefficient of the (∇φ)2 term negative? (Give a physical interpretation). If you
eliminate the particle density in terms of the potential, what is the energy density associated
with the resulting electric field ~E = −~∇φ?

(d) Write down the effective action of the system when the fermions have been integrated out and
interpret your result in terms of Feynman diagrams.

(e) Suppose the potential field acquires a “mass” term:

S EM =

∫ β

0
dτ

∫
d3x

[
−eρ(x)φ(x) − ε0

φ(−∇2 + κ2)φ
2

]
(2)

What form does S EM take (in real space) when one integrates out the potential field?
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3. Consider the Euclidean action for a single Harmonic oscillator

S E =

∫ β

0
dτ [ā (∂τ + ω) a]

(a) By re-writing the fields a and ā in terms of their momentum and position co-ordinates (here
we take ~ = m = 1)

a =

√
ω

2

(
x + i

p
ω

)
,

ā =

√
ω

2

(
x − i

p
ω

)
, (3)

derive the action in terms of p and x. (Hint: terms like
∫

dτx∂τx =
1
2

∫
dτ∂τ(x2) = 0 vanish

because they are perfect differentials of functions periodic in β).

(b) Carry out the Gaussian integral over the momentum field p and derive the corresponding action
in terms of ẋ and x.

4. Mean field theory for antiferromagnetic Spin Density Wave Develop the mean-field theory for a
three dimensional tight-binding cubic lattice with commensurate antiferromagnetic order parameter

M j = MeiQ·R j (4)

where Q = (π, π, π).

(a) Show that the mean-field free energy can be written in the form

HMF =
∑

k∈ 1
2 BZ

ψ†k

(
εk − µ M · ~σ
M · ~σ εk+Q − µ

)
ψk +Ns

M2

2I
(5)

where M = |M| is the magnitude of the staggered mangetization, ψk denotes the four-component
spinor

ψk =


ck↑
ck↓

ck+Q↑
ck+Q↓

 , (6)

εk = −2t(cx +cy +cz), (cl ≡ cos kl, l = x, y, z) is the kinetic part of the energy and the summation
is restricted to the magnetic Brillouin zone, (One half the original Brillouin zone.)
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(b) On a tight binding lattice the kinetic energy has the “nesting” property that εk+Q = −εk. Show
that the energy eigenvalues of the mean-field Hamiltonian have a BCS form

Ek± = ±

√
ε2

k + M2 − µ. (7)

corresponding to an excitation spectrum with gap M. Notice that the gap is offset by an amount
µ.

(c) Show that the mean-field free energy takes the form

F =
∑

k,p=±1

−T ln
[
2 cosh

(
βEkp

2

)]
+Ns

(
M2

2I
− 2µ

)
(8)

(d) By minimizing the free energy with respect to M, show that the gap equation for M is given by

1
2

∑
k,p=±1

tanh


√
ε2

k + M2 − µp

2T

 1√
ε2

k + M2
=

1
I
. (9)

(e) Show that at half filling, the nesting guarantees that a transition to a spin-density wave will
occur for arbitrarily small interaction strength I.

(f) Calculate the phase diagram assuming that the order remains commensurate at finite doping.
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