682A. Exercises 2. Due Mar 23rd

1. Carry out a Hubbard Stratonovich transformation for the following interaction Hamiltonians, fac-
torizing the terms in brackets, and write one or two sentences interpreting the effective Hamiltonian
that it gives rise to

(a) An attractive interaction between particles in a superconductor
Hy=—g f & x @ WL D))y (g 1(0))

(b) Ina “spin liquid” with antiferromagnetic interaction written
Hi= =225 (Finfio) (/i fir)
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(¢) A “Kondo interaction” between a conduction electron field ¢, and a boson field b,
Hl = _Z wiaba bT,Blr//,B .
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(Beware bfﬁzlfﬁ is a fermionic combination.)

2. The interaction between an electron gas and the potential field is given by
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(a) Write down the path integral for a Coulomb gas of quantum electrons, involving an integral
over the electron and potential fields.

(b) What equation does the potential ¢ satisfy at the saddle point of this path integral?

(c) Why is the coefficient of the (V¢)* term negative? (Give a physical interpretation). If you
eliminate the particle density in terms of the potential, what is the energy density associated
with the resulting electric field E= —ﬁqb?

(d) Write down the effective action of the system when the fermions have been integrated out and
interpret your result in terms of Feynman diagrams.

(e) Suppose the potential field acquires a “mass” term:
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What form does S gy, take (in real space) when one integrates out the potential field?
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3. Consider the Euclidean action for a single Harmonic oscillator
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(a) By re-writing the fields @ and a in terms of their momentum and position co-ordinates (here
wetakehi=m=1)
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derive the action in terms of p and x. (Hint: terms like f dtxd.x = 3 f drd,(x*) = 0 vanish

because they are perfect differentials of functions periodic in §).
(b) Carry out the Gaussian integral over the momentum field p and derive the corresponding action

in terms of x and x.

4. Mean field theory for antiferromagnetic Spin Density Wave Develop the mean-field theory for a
three dimensional tight-binding cubic lattice with commensurate antiferromagnetic order parameter

M; = M™% “)
where Q = (w, 7, 7).

(a) Show that the mean-field free energy can be written in the form
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where M = |M| is the magnitude of the staggered mangetization, ¥, denotes the four-component
spinor

CkT
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e = —2t(cy+cy+c;), (¢; = cosk;, [ = x,y,7) is the kinetic part of the energy and the summation
is restricted to the magnetic Brillouin zone, (One half the original Brillouin zone.)
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(b)

()

(d)

(e)
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On a tight binding lattice the kinetic energy has the “nesting” property that €,q = —ex. Show
that the energy eigenvalues of the mean-field Hamiltonian have a BCS form

Exe = £/ + M? — p1. 7

corresponding to an excitation spectrum with gap M. Notice that the gap is offset by an amount
M.

Show that the mean-field free energy takes the form
ﬁEkp M2
F = —T In |2 cosh + Ni|—=-2 8
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By minimizing the free energy with respect to M, show that the gap equation for M is given by

V&M —pp| 1
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Show that at half filling, the nesting guarantees that a transition to a spin-density wave will
occur for arbitrarily small interaction strength /.

Calculate the phase diagram assuming that the order remains commensurate at finite doping.



