
682A. Solutions to Exercises 1. March 2015

1. (a) Using a Taylor expansion, and noting that ↵n = 0 for all n > 1,

(1 + ↵)�1 = (1 � ↵ + (�↵)2 + . . . ) = 1 � ↵.

We can’t invert 1/↵ because there is no Taylor expansion around ↵ = 0. Lets try to calculate
the inverse of alpha by looking at

(✏ + ↵)�1 =
1

✏(1 + (↵✏ ))
=

1
✏
� ↵.

Unfortunately, we can’t take the limit ✏ ! 0, due to the singular term. There is thus no
Grassman number corresponding to ↵�1.

(b) Using a binomial expansion, noting that the expansion truncates at linear order, we obtain:

p
(1 + ↵̄↵) =

 
1 +

1
2
↵̄↵ � 1

8
(↵̄↵)2 + . . .

!
= 1 +

↵̄↵

2
.

(c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

cos[↵̄↵ + �̄�] = 1 � 1
2

(↵̄↵ + �̄�)2 +
1
6

(↵̄↵ + �̄�)4 = 1 � (↵̄↵)(�̄�). (1)

(d) Similarly, carrying out a Taylor expansion of the matrix exponential,

exp
 
0 ↵
↵̄ 0

!
= 1 +

 
0 ↵
↵̄ 0

!
+

1
2

 
0 ↵
↵̄ 0

!2

=

0
BBBBBBBBB@
1 � 1

2
↵̄↵ ↵

↵̄ 1 +
1
2
↵̄↵

1
CCCCCCCCCA
.

(e) If f (↵̄,↵) = f + �̄↵ � ↵̄� + g↵̄↵ is a Grassmanian function of two variables, then

i.
@ f (↵̄,↵)
@↵

= ��̄ � g↵̄,

ii.
@2 f (↵̄,↵)
@↵̄@↵

=
@

@↵̄
(��̄ � g↵̄) = �g,

iii. Since di↵erentiation over Grassman variables is equivalent to integration
Z

d↵̄d↵ f (↵̄,↵) =
@2 f (↵̄,↵)
@↵̄@↵

= �g.
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(f)
Z

d↵̄1d↵1d↵̄2d↵2 exp
"⇣
↵̄1, ↵̄2

⌘  1 2
2 �1

!  
↵1

↵2

!#
= det

 
1 2
2 �1

!
= �5.

2. In this question, I wanted to check that you had understood how to set up a fermionic path integral.

(a) The first step in setting up the path integral is to write the Trace using coherent states. For a
general operator Â, we may write

hc̄|Â|ci = Aoohc̄|0ih0|ci + A01hc̄|0ih1|ci + A10hc̄|1ih0|ci + A11hc̄|1ih1|ci
= Aoo + A01c + A10c̄ + A11c̄c, (2)

so that the trace may be written

Tr[A] = A00 + A11 = �
Z

dc̄dcec̄chc̄|Â|ci. (3)

Applying this to the partition function,

Tr[e��H] = �
Z

dc̄3dc0ec̄3c0hc̄3|e��H |c0i

=

Z
dc̄3dc3e�c̄3c3hc̄3|e��H |c0i, (4)

where we have used the definition, c3 = �c0. We now use the completeness relation

1 =
Z

dc̄dce�c̄c|cihc| (5)

to introduce two time-slices into the matrix element hc̄3|e��H |c3i, which we write as

hc̄3|e��H |c3i =
Z

dc̄2dc2dc̄1dc1hc̄3|e��⌧H |c2ihc̄2|e��⌧H |c1ihc̄1|e��⌧H |c0ie�c̄1c1�c̄2c2 . (6)

Finally, using the expansion of the matrix element in terms of coherent states,

hc̄ j+1|e��⌧H |c ji = e↵c̄ j+1c j + O(�⌧2), (7)

where ↵ = (1 � �⌧✏), we obtain

Z3 =

Z
dc̄3dc3dc̄2dc2dc̄1dc1e↵[c̄3c2+c̄2c1+c̄1c0]�[c̄3c3+c̄2c2+c̄1c1]

=

Z
dc̄3dc3dc̄2dc2dc̄1dc1 exp

8>>><
>>>:
�(c̄3, c̄2, c̄1)

0
BBBBBBBB@

1 �↵ 0
0 1 �↵
↵ 0 1

1
CCCCCCCCA

0
BBBBBBBB@

c3

c2

c1

1
CCCCCCCCA

9>>>=
>>>;
, (8)

where we have set c0 = �c3 in the last step.
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(b) Since this integral is Gaussian, the integral is given by the determinant of the matrix:

Z3 = det

0
BBBBBBBB@

1 �↵ 0
0 1 �↵
↵ 0 1

1
CCCCCCCCA = 1 + ↵3. (9)

(c) Generalizing this result to N time-slices, we obtain

ZN = det [M]

M =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 �↵ 0 . . . 0

0 1 �↵ . . .
...

...
...
. . .

...
...
...

. . . �↵
↵ . . . . . . . . . 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

det[M] = 1 + ↵N (by inspection). (10)

In the limit N ! 1,

LtN!1

✓
1 � �✏

N

◆N

= e��✏ , (11)

so that

ZN ! 1 + e��✏ . (12)

3. We need to evaluate
Z =

Z
D[ f̄ , f ]e�S , (13)

where
S =

Z
d⌧ f̄↵

✓
@⌧ � ~� · ~B

◆

↵,�
f�, (14)

where ~B = Bẑ is the applied field. Since this is a Gaussian integral,

Z = det
⇣
@⌧ � ~� · ~B

⌘

F = �T ln Z = �TTr ln
⇣
@⌧ � ~� · ~B

⌘
. (15)

To evaluate the trace, we go into the frequency domain, @⌧ ! �i!n

F = �T
X

i!n

Tr ln
⇣
�i!n � ~� · ~B

⌘
. (16)
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Formally, to carry out the Matsubara sum, we convert the summation to a contour integral around the
poles of the Fermi function f (z). We then distort the integral around the branch-cuts in the logarithm
and carry out the integral to obtain:

F = �T
X

i!n,�

ln (�i!n � �B)

=
X

�

↵

branch�cut

dz
2⇡i

f (z) ln(�z � �B)

=
X

�

Z 1

��B

d!
⇡

f (!)Im ln(�! � �B + i�)

=
X

�

Z 1

��B
d! f (!)

=
X

�

�T ln(1 + e��B)

= �2T ln[2 cosh
�B
2

]. (17)

The partition function is

Z =
✓
2 cosh

�B
2

◆2

= 2 cosh �B + 2 = Zspin + 2. (18)

Notice how this di↵ers from the partition function of a spin because the remainder term derived from
the the empty and doubly occupied states. One way of removing these states is using the “Popov
Fedatov” trick, in which one adds an imaginary chemical potential to the Hamiltonian as follows:

H = � f †
⇣
~� · ~B

⌘
f + i

✓⇡T
2

◆
( f † f � 1).

The additional complex chemical potential term has the e↵ect of cancelling out the unwanted empty
state with the unwanted doubly occupied state, to give the correct partition function.

4. Let us evaluate

I =
Z

dc̄dch�c|Â|cie�c̄c, (19)

where
h�c̄|Â|ci = (A0 � A1c̄c)e�c̄c. (20)

Carrying out the integral, we have

I =
Z

dc̄dc(A0 � A1c̄c)e�2c̄c
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=

Z
dc̄dc(A0 � A1c̄c)(1 � 2c̄c)

=

Z
dc̄dc(�2c̄cA0 � A1c̄c)

= (2A0 + A1), (21)

as expected.

5. I’m sorry, this was a lot more challenging that I had in mind at first. The hint was only half-way
helpful, because I had made a mistake in my original solution. We had

M = e
1
2
P

i, j Ai jc†ic† j ,

where Ai j is an N ⇥ N antisymmetric matrix, and the c† j are a set of N canonical Fermi creation
operators. Our task is to use coherent states to calculate

t = Tr[MM†],
where the trace is over the 2N dimensional Hilbert space of fermions. As we shall see, the answer
for A real, is simply t = det[2 + A].
Converting this into Grassmanian calculus, we have

t =
Z Y

i

dc̄idcih�c̄|MM†|cie�
P

i c̄ici . (22)

Now sinceMM† is already normal ordered, we know that

h�c̄|MM†|ci = exp

2
6666664
1
2

0
BBBBBB@
X

i, j

Ai jc̄ic̄ j + (H.c)

1
CCCCCCA

3
7777775 e�

P
i c̄ici ,

so that the full trace can be written

t =
Z Y

i

dc̄idci exp

2
6666664
1
2

0
BBBBBB@
X

i, j

Ai jc̄ic̄ j + (H.c)

1
CCCCCCA � 2

X

i

c̄ici

3
7777775

=

Z Y

i

dc̄idci exp
"
�1

2
 ̄

 
2 �A
�A† �2

!
 

#
, (23)

where 2 = 21 is twice the N dimensional unit matrix and

 ̄ = (c̄1, . . . c̄N , c1 . . . cN),  =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

c1
...

cN

c̄1
...

c̄N)

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (24)
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defines a 2N dimensional spinor  and its conjugate.

Now (23) is a Gaussian integral, so we can definitely do it, but you’ve got to be a bit careful, because
you can’t just take the determinant of the matrix, because the ci occur in both  and  ̄, so  and
 ̄ aren’t independent. You can do the integral in various ways. One way to do it would be to first
diagonalize

1
2
 ̄

 
21 �A
�A† �21

!
 ! 1

2
↵̄

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�1
. . .

�N

��1
. . .

��N

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

↵ =
X

i

�i↵̄i↵i, (25)

where the �i are the eigenvalues of the matrix. The doubling of the eigenvalues is guaranteed by the
particle-hole symmetry of the matrix. Now when we do the integral over the ↵i, we have to notice
that the first N and second N terms in the exponential of the integrand are identical and should be
grouped together, so that the integral over the ↵ variables is then,

t =
Z Y

d↵̄id↵ie�
P

i �i↵̄i↵i =
Y

i

�i =

s

(�1)Ndet
 

2 �A
�A† �2

!
, (26)

where the (�1)N is a result of making the identification

det
 

2 �A
�A† �2

!
= (�1)N

0
BBBBB@
Y

i

�i

1
CCCCCA

2

. (27)

Another way to do the integral is to “square it”, writing the square as the integral as two separate
integrals, then combining them into a single integral in which  and  ̄ are independent. (The (�1)N

is picked up in the combination process). The final answer is then the square root of the determinant.

Anyway, we can check our answer for A = 0, and this gives 2N , which is the right answer! You

can also check the result for the N = 2 case where A =
 

0 a
�a 0

!
, which gives t = 4 � a2 by direct

integration, and from the above formula. We can actually simplify the result a bit more. If we square
the matrix, it becomes diagonal, so that

det
 

2 �A
�A† �2

!2

= det
 
4 + AA†

4 + A†A

!
= det(4 + A†A) det(4 + AA†) = det(4 + A†A)2. (28)

In the above expression, we are able to identity det(4 + AA†) = det(4 + AA†)T = det(4 + A⇤AT ) =
det(4 + (�A†)(�A)) = det(4 + A†A), where the middle step relied on the antisymmetry of A. Here
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we’ve been a bit sloppy, writing 4 where we really should write 4. Thus,

det
 

2 �A
�A† �2

!
= (�1)N det(4 + A†A). (29)

Combining everything, we then have

t = Tr[MM†] =
h
det(4 + A†A)

i1/2
= [det(4 � A⇤A)]1/2 , (30)

where the last step follows from the antisymmetry of A. For the special case where A is real, so that
A⇤ = A, this can be further simplified into

t =
p

det[2 � A] det[2 + A] =
p

det[2 � A] det[2 � A]T = det[2 + A]. (31)
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