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12.4 Coherent states and Grassman mathematics 437

Table 12.2 Grassman calculus.

Algebra c1c2 = −c2c1 Anticommute with fermions and other Grassman
numbers

cb̂ = b̂c, cψ̂ = −ψ̂c Commute with bosons, anticommute with fermi
operators

Functions f [c̄, c] = fo + c̄f1 + f̃1c + f12c̄c Since c2 = 0, truncate at linear order in each variable

Calculus ∂f = −f̃1 − f12c̄ Differentiation

∂̄f = f1 + f12c
∫

dc ≡ ∂c

∫
dc1 = ∂c1 = 0

∫
dcc = ∂cc = 1

Completeness 〈c|c〉 = ec̄c Overcomplete basis
∫

dc̄dce−c̄c|c〉〈c̄| = 1 Completeness relation

Tr[Â] =
∫

dc̄dce−c̄c〈−c̄|Â|c〉 Trace formula

Change of variable J
(

c1 . . . cr

ξ1 . . . ξr

)
=

∣∣∣∣
∂(c1, . . . cr)
∂(ξ1, . . . ξr)

∣∣∣∣
−1

Jacobian (inverse of bosonic Jacobian)

Gaussian integrals
∫ ∏

j

dc̄jdcje
−
[
c̄·A·c̄−j̄·c−c̄·j

]
= detA × e

[
j̄·A−1·j

]

Notice the formal parallel with the overlap of bosonic coherent states. To derive the
completeness relation, we start with the identity

∫
dc̄dce−c̄ccnc̄m = δnm (n, m = 0, 1). (12.104)

Then, by writing cn = 〈n|c〉, c̄m = 〈c̄|m〉, we see that the overlap between the eigenstates
|n〉 of definite particle number is given by

δnm = 〈n|m〉 =
∫

dc̄dce−c̄c〈n|c〉〈c̄|m〉 = 〈n|
∫

dc̄dce−c̄c |c〉〈c̄| |m〉, (12.105)

from which it follows that

∫
dc̄dc|c〉〈c̄|e−c̄c = |0〉〈0| + |1〉〈1| ≡ 1. (12.106)

completeness relation

Alternatively, we may write
∑

c̄,c

|c〉〈c̄| = 1,
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where
∑

c̄, c

≡
∫

dc̄dce−c̄c (12.107)

is the measure for fermionic coherent states. The exponential factor e−c̄c = 1/〈c̄|c〉
provides the normalizing factor to take account of the overcompleteness.

Matrix elements between coherent states are easy to evaluate. If an operator A[ĉ†, ĉ] is
normal ordered, then, since the coherent states are eigenvectors of the quantum fields, it
follows that

〈c̄|Â|c〉 = 〈c̄|c〉A[c̄, c] = ec̄cA[c̄, c]. (12.108)

That is,

〈c̄|Â|c〉 = ec̄c × c-number formed by replacing A[ĉ†, ĉ] → A[c̄, c]. (12.109)

This wonderful feature of coherent states enables us, at a swoop, to convert normal-ordered
operators into c-numbers.

The last result we need is the trace of A. We might guess that the appropriate
expression is

Tr Â =
∑

c̄,c

〈c̄|Â|c〉.

This is almost right, but in fact it turns out that the anticommuting properties of the
Grassmans force us to introduce a minus sign into this expression:

Tr Â =
∑

c̄,c

〈−c̄|Â|c〉 =
∫

dc̄dce−c̄c〈−c̄|Â|c〉, (12.110)

Grassman trace formula

which, we shall shortly see, gives rise to the antisymmetric boundary conditions of
fermionic fields. To prove the above result, we rewrite (12.105) as

δnm = 〈n|m〉 =
∫

dc̄dce−c̄c〈−c̄|m〉〈n|c〉, (12.111)

where the minus sign arises from anticommuting c and c̄. We can now rewrite the trace as

Tr A =
∑

n,m

〈m|A|n〉δnm

=
∑

n,m

∫
dc̄dce−c̄c〈−c̄|m〉〈m|A|n〉〈n|c〉

=
∫

dc̄dce−c̄c〈−c̄|Â|c〉. (12.112)

We shall make extensive use of the completeness and trace formulae (12.106) and (12.110)
in developing the path integral. Both expressions are simply generalized to many fields cj
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so that (12.194) factorizes into a radial and an angular integral:

Inm = 1√
n! m!

∫
db̄db
2π i

b̄nb̄me−b̄b = 1√
n! m!

∫ ∞

0
2rdrrn+me−r2 ×

δmn︷ ︸︸ ︷∫ 2π

0

dφ

2π
eiφ(n−m),

(12.195)
where we have substituted 〈n|b〉 = 1√

n!
bn and 〈b̄|m〉 = 1√

m!
b̄m. The angular integral van-

ishes unless n = m. Changing variables r2 → x, 2rdr = dx, in the first integral, we then
obtain

Inm = δnm

n!

∫ ∞

0
dx xne−x = δnm, (12.196)

proving the orthogonality relation. Now since δnm = 〈n|m〉, we can write the orthogonality
relation (12.194) as

〈n|m〉 =
∫

db̄db
2π i

e−b̄b〈n|b〉〈b̄|m〉 = 〈n|
(∫

db̄db
2π i

e−b̄b|b〉〈b̄|
)

|m〉.

Since this holds for all states |n〉 and |m〉, it follows that the quantity in brackets is the unit
operator:

1̂ =
∫

db̄db
2π i

e−b̄b|b〉〈b̄| =
∫

db̄db
2π i

|b〉〈b̄|
〈b̄|b〉 ≡

∑

b̄,b

|b〉〈b̄|. Completeness relation (12.197)

Appendix 12B Grassman differentiation and integration

Differentiation is defined to have the normal linear properties of the differential operator.
We denote

∂c ≡ ∂

∂c
, ∂c̄ ≡ ∂

∂ c̄
, (12.198)

so that

∂cc = ∂c̄c̄ = 1. (12.199)

If we have a function

f (c̄, c) = f0 + f̄1c + c̄f1 + f12c̄c, (12.200)

then differentiation from the left-hand side gives

∂cf = f̃1 − f12c̄

∂c̄f = f1 + f12c, (12.201)

where the minus sign in the first expression occurs because the ∂̄ operator must anticom-
mute with c. But how do we define integration? This proves to be much easier for Grassman
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variables than for regular c-numbers. The great sparseness of the space of functions dra-
matically restricts the number of linear operations we can apply to functions, forcing
differentiation and integration to become the same operation:

∫
dc ≡ ∂c,

∫
dc̄ ≡ ∂c̄. (12.202)

In other words,
∫

dc̄c̄ = 1,
∫

dcc = 1,
∫

dc̄ =
∫

dc = 0. (12.203)

Appendix 12C Grassman calculus: change of variables

Suppose we change variables, writing



c1
...

cr



 = A




ξ1
...

ξr



 , (12.204)

where A is a c-number matrix. Then we would like to know how to evaluate the Jacobian
for this transformation, which is defined so that

∫
dc1 · · · dcr [. . .] =

∫
J
(

c1 · · · c
ξ1 · · · ξr

)
dξ1 · · · dξr [. . .] . (12.205)

Now since integration and differentiation are identical for Grassman variables, we can
evaluate the fermionic Jacobian using the chain rule for differentiation, as follows:

∫
dc1 · · · dcr [. . .] = ∂r

∂c1 · · · ∂cr
[. . .]

=
∑

P

(
∂ξP1

∂c1
· · · ∂ξPr

∂cr

)
∂r

∂ξP1 · · · ∂ξPr

[. . .] , (12.206)

where P =
(

1 · · · r
P1 · · · Pr

)
is a permutation of the sequence (1 · · · r). But we can order the

differentiation in the second term, picking up a factor (−1)P, where P is the signature of
the permutation, to obtain

∫
dc1 · · · dcr [. . .] =

∑

P

(−1)P
(

∂ξP1

∂c1
· · · ∂ξPr

∂cr

)
∂r

∂ξ1 · · · ∂ξr
[. . .]

= det[A−1]
∂r

∂ξ1 · · · ∂ξr
[. . .]

=
∫

det[A−1]dξ1 · · · dξr [. . .] , (12.207)
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where we have recognized the prefactor as the determinant of the inverse transformation
ξ = A−1c. From this result, we can read off the Jacobian of the transformation as

J
(

c1 . . . cr

ξ1 . . . ξr

)
= det[A]−1 =

∣∣∣∣
∂(c1, . . . cr)
∂(ξ1, . . . ξr)

∣∣∣∣
−1

, (12.208)

which is precisely the inverse of the bosonic Jacobian. This has important implications
for supersymmetric field theories, where the Jacobians of the bosons and fermions pre-
cisely cancel. For our purposes, however, the most important point is that, for a unitary
transformation, the Jacobian is unity.

Appendix 12D Grassman calculus: Gaussian integrals

The basic Gaussian integral is simply
∫

dc̄dce−ac̄c =
∫

dc̄dc(1 − ac̄c) = a. (12.209)

If we now introduce a set of N variables, then

∫ ∏

j

dc̄jdcj exp −




∑

j

ajc̄jcj



 =
∏

j

aj. (12.210)

Suppose we now carry out a unitary transformation, for which the Jacobian is unity. Then,
since

c = Uξ , c̄ = ξ̄U†,

the integral becomes ∫ ∏

j

dξ̄jdξj exp[−ξ̄ · A · ξ ] =
∏

j

aj,

where Aij = ∑
l U†

ilalUlj is the matrix with eigenvalues al. It follows that
∫ ∏

j

dξ̄jdξj exp[−ξ̄ · A · ξ ] = det A. (12.211)

Finally, by shifting the variables ξ → ξ + A−1j, where j is an arbitrary vector, we find that

Z[j] =
∫ ∏

j

dξ̄jdξj exp[−(ξ̄ · A · ξ + j̄ · ξ + ξ̄ · j)] = detA exp[ j̄ · A−1 · j]. (12.212)

This is the basic Gaussian integral for Grassman variables. Notice that, using the result
ln detA = Tr lnA, it is possible to take the logarithm of both sides to obtain

S[j] = −ln Z[j] = −Tr ln A − j̄ · A−1 · j. (12.213)
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The main use of this integral is for evaluating the path integral for free-field theories. In
this case, the matrix A → −G−1 becomes the inverse propagator for the fermions, and
ξn → ψ(iωn) is the Fourier component of the Fermi field at Matsubara frequency iωn.

Exercises

Exercise 12.1 In this problem, consider ! = 1. Suppose |0〉 is the ground state of a harmonic
oscillator, where b|0〉 = 0. Consider the state formed by simultaneously translating
this state in momentum and position space as follows:

|p, x〉 = exp
[
−i(xp̂ − px̂)

]
|0〉.

By rewriting b̂ = (x̂+ip̂)/
√

2, z = (x+ip)/
√

2, show that this state can be rewritten as

|p, x〉 = eb†z−z̄b|0〉.

Using the relation eA+B = eAeBe
1
2 [A,B], provided [A, [A, B]] = [B, [A, B]] = 0, show

that |p, x〉 is equal to a normalized coherent state

|p, x〉 ≡ |z〉e−z̄z/2 = eb†z|0〉e− 1
2 z̄z,

showing that the coherent state |z〉 represents a minimum-uncertainty wavepacket
centered at (q, p) in phase space.

Exercise 12.2 Repeat the calculation of Section 12.3 without taking the continuum limit.
Show that the path integral for a single boson with Hamiltonian H = εb†b with a
large but finite number of time-slices is given by

ln ZN =
N∑

n=1

ln
(

ε − iνnF(iνn&τ/2)
)

,

where F(x) = (1 − e−x)/x. If you approximate each term in the sum by its value at
&τ = 0 and then take N → ∞, the result obviously converges to the continuum
limit. But the error contribution from N such terms appears to be of order O(N ×
&τ ) = O(1). Use contour integration to show that this is fortunately an overestimate,
and that the actual error is O(&τ ) = O(1/N).

Exercise 12.3 Using path integrals, calculate the partition function for a single Zeeman-split
electronic level described by the action

S =
∫

dτ f̄α

(
δαβ∂τ + (σαβ · (B

)
fβ .

Why is your answer not the same as the partition function of a spin S = 1
2 in a

magnetic field?
Exercise 12.4 Suppose

M = e
1
2

∑
i,j Aijc†

ic†
j ,

Atop


