When we are dealing with macroscopic ensembles of portides, we seek a compact way of representing the thermal and quarimon flucmations so that we can calculate their stabishial mechanics \& their dynamics; we also seek to explore broken oymmetry phases of matter, ouch as a superconductor or a superfluid, where the field operator acquires an expectation value

$$
\vec{k}=\vec{\nabla} \varphi
$$

$$
\begin{gathered}
\Psi(x)=\left\langle\hat{\psi}_{(x)}\right\rangle=\sqrt{n_{s}(x)} e^{i \varphi(x)} \quad \text { Superfluid eq }{ }^{4} \mathrm{He} \\
\vec{V}_{s}=\frac{\hbar}{m} \vec{k}_{s}=\frac{\hbar}{m} \nabla \varphi(x)
\end{gathered}
$$

How can we accomplish this?

Path integrals provide a way to accomplish this. Basic idea: reformulate the quantum amplitude to go from $i \rightarrow f$ as a sum over all possible paths, in which the classical acton plays the role of the phase

$$
\phi=S_{\text {PATH }} \mid \hbar
$$

$$
A=e^{i \phi_{\text {centum }}}
$$

Particle in a Box

$$
\begin{aligned}
A_{i \rightarrow f} & =\langle f| e^{\left(e^{-\frac{i \Delta \hat{H}}{\hbar}}\right.}|i\rangle \\
& =\sum_{\text {PATHS }} \sum_{i \rightarrow f} \exp ^{-i \Delta t}\left[i \frac{S_{P A T H}}{\hbar}\right] .
\end{aligned}
$$

$$
S_{p q \pi I I}=\int_{0}^{t} d t^{\prime}[p \dot{q}-H[p, q]] .
$$

This is a precise reformulation of Heisenberg's operator Q.M. Moreover $\hbar \rightarrow 0$ corresponds to the classical limit

Feynman's idea can be extended to statistical mechanics by treating the Boltzmann density matrix as a time evolution opeatsan in imaginary time

$$
\begin{aligned}
& \langle f| e^{-i l t / k}|i\rangle \quad i=f \\
& Z=\sum_{\lambda}^{e^{-F / k_{B} T}} e^{-\beta E_{\lambda}}=\operatorname{Tr}\left[e^{-\beta \hat{H}}\right]=\left.\sum_{\lambda}^{\text {Density Matax }}\langle\lambda| e^{-\frac{\hat{\mu} t}{\hbar}}|\lambda\rangle\right|_{t} \\
& \beta=\hbar \mid k_{B} T \text {. } \\
& t=-i T / \hbar
\end{aligned}
$$

By charging vanables it/ $\hbar \rightarrow T$, oo that $\frac{i d t}{\hbar}=d T$ and $p \dot{q}_{t} d t=p \dot{q} \tau d T$ we can rewrite this quantity as

$$
\begin{aligned}
& \mathcal{Z}=\sum_{\substack{\text { periodic } \\
\text { pals }}} \exp \left[-S_{E}\right] \\
& S_{E}=-\frac{i S_{c l}}{\hbar}=\int_{0}^{\hbar \beta=P L A N c K ~ T M E E}\left[-\frac{i}{\hbar} p \dot{q}_{\tau}+H[p, q]\right] d \tau
\end{aligned}
$$

Coherent States provide the key (somchmes "Glauber" states.)

$$
\begin{aligned}
&|\alpha\rangle=e^{\hat{b}^{+} \alpha}|0\rangle \begin{array}{l}
\hat{H}=\epsilon \hat{b}^{+} \hat{b} \\
\hat{b}=\frac{9+i p}{\sqrt{2}} \quad \text { til. }
\end{array} \\
& \hat{b}|\alpha\rangle=\alpha|\alpha\rangle \\
& \alpha=\left(q_{0}+i p p_{0}\right) / \sqrt{2}\left(\hat{b}=\hat{q^{\prime}+i \hat{p}} \sqrt{\sqrt{2}}\right) \\
& \hat{b}|\alpha\rangle=\left(\frac{q_{0}+(p)}{\sqrt{2}}|\alpha\rangle\right.
\end{aligned}
$$

Ground-state

$$
\psi \sim e^{-x^{2} / 4 e^{2}} \equiv\langle x \mid 0\rangle
$$

Coherent State

$$
\begin{aligned}
\langle x \mid \alpha\rangle & =\langle x| e^{b^{+} \alpha}|0\rangle \\
& =\exp \left[\left(\frac{q+i\left(-i \partial_{q}\right)}{\sqrt{2}}\right) \alpha\right]\langle x \| 0\rangle \\
\Psi_{\alpha}(x) & \left.=\exp \int\left(\frac{q+\partial_{q}}{\sqrt{2}}\right) \alpha\right] e^{-x^{2} / 4 e^{2}}
\end{aligned}
$$

Mary body physics $\hat{\psi}(x)$ - Field

$$
\hat{\psi}(x)|\phi\rangle=\phi(x)|\phi\rangle
$$

Eigentate of the field op.

$$
\hat{b}^{t}=\int d^{d} x \psi^{+}(x) \phi(x)
$$

Coherently adds a boon to the condensate with wavefunction $\phi(x)$.

$$
\begin{aligned}
|\phi\rangle & =\exp \left[b^{+}\right]|0\rangle \\
& =\exp \left[\int d^{d} x \psi^{+}(x) \phi(x)\right]|0\rangle
\end{aligned}
$$

We can we these as vavepacteels for Mary Body Phyoics.

$$
\begin{aligned}
& \int_{0}^{\hbar \beta=P L A N C K \text { TIME }}\left[\frac{-i}{\hbar} p \dot{q}_{\tau}+H[p, q]\right] d T \\
& \psi \sim q(x) \quad \text { i } \psi^{+} \sim p(x) \\
& {\left[\psi(x), \psi^{+}(y)\right]=\delta(x-y) \equiv\left[q(x), \frac{p(y)}{i \hbar}\right]} \\
& \phi(x) \sim q \quad i \hbar \bar{\phi}(x) \sim \pi \\
& \frac{-i}{\hbar} p \dot{q}_{\tau} \sim \bar{\phi} \delta_{\tau} \phi
\end{aligned}
$$

$$
\begin{aligned}
& S_{E}=\int_{0}^{\beta} d \tau d^{3} x\left[\bar{\phi}(x, \tau) d_{1} \phi(x, \tau)+H[\bar{\phi}, \phi)\right] \\
& \left\langle T \psi(1) \psi^{+}(2)\right\rangle=\frac{1}{z} \sum_{\text {Pamm }} \phi(1) \bar{\phi}(2) e^{-S_{\text {Parm }}} \\
& Z=\sum_{\text {PAMS }} e^{-S_{\text {PATM }}}
\end{aligned}
$$

Fermions $\phi(x)$ will have be a neu kind
of number.

$$
\begin{aligned}
& \hat{C} \hat{c}^{-1}=-\hat{c} \hat{c} \quad \begin{array}{l}
\text { Exccusion } \\
\text { principie }
\end{array} \\
& \hat{\varphi} \bar{\varphi}=-\bar{\varphi} \varphi
\end{aligned}
$$

"Grasomann number"

"untolding of interachons in terms of a fuchanhy order parmeter field

$$
\begin{gathered}
\frac{\phi_{i}}{\left[\phi_{i}, p ;\right]=i \hbar \delta_{j j}} \\
{\left[\phi(y)=p_{j}\right.} \\
\psi=\frac{\phi(y)]}{\sqrt{2}} \quad \hbar \delta(x-y) \\
{\left[\psi, \psi^{+}\right]=\delta(x-y)}
\end{gathered}
$$

Coherent stales for bosons

$b \stackrel{\rightharpoonup}{q}$

$$
\ddot{q}=\frac{2 \pi}{L}(n, m, e)
$$

$$
\begin{aligned}
& \hat{b}|\alpha\rangle=\alpha|\alpha\rangle \\
& |\alpha\rangle=e^{\hat{b}^{+} \alpha}|0\rangle \\
& e^{\hat{b}^{+} \alpha}=\sum_{n=0}^{\infty} \frac{\left(b^{+} \alpha\right)^{-}}{n!} \\
& \hat{b}|\alpha\rangle=\hat{b}\left(1+b^{+} \alpha+\frac{\left(b^{+} \alpha\right)^{2}}{2!}+\ldots\right)|0\rangle \\
& {\left[b, b^{+}\right]=1 \quad\left[\hat{b},\left(b^{+}\right)^{n}\right]=n\left(b^{+}\right)^{n-1} \quad i} \\
& b\left(b^{+}\right)^{n}|0\rangle=\left[\left(b^{+}\right)^{n} b+n\left(b^{+}\right)^{n-1}\right]|0\rangle \\
& =n\left(b^{+}\right)^{n-1}|0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& {\left[b, e^{i{ }^{+} \alpha}\right]=\left[b, \sum \frac{\alpha^{\alpha}\left(b^{t} b^{1}\right)}{n!}\right]} \\
& \begin{aligned}
=\sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!} \underbrace{b_{1}\left(b^{+}\right)}_{n\left(b^{+}\right)^{-1}} & =\sum \frac{\alpha^{-1} b^{-1}}{(n-1)!} \\
& =\alpha e^{n^{+\alpha}}
\end{aligned} \\
& b e^{b^{b^{\alpha} \alpha}}|0\rangle=\left(e^{b^{b^{t} \alpha}} b+\alpha e^{b^{t} \alpha}\right)|0\rangle \\
& { }^{\circ}=\alpha|\alpha\rangle \\
& \langle\bar{\alpha}|=\langle 0| e^{\bar{\alpha} \hat{b}}=(|\alpha\rangle)^{+} \\
& \langle\bar{\alpha}| b^{+}=\langle\bar{\alpha}| \bar{\alpha}
\end{aligned}
$$

Eigentate of \hat{b}^{+}aching left.

$$
|\alpha\rangle=\sum \frac{\alpha^{n}}{n!}\left(b^{+}\right)^{n}|0\rangle
$$

n quanta in it

$$
\hat{n}|n\rangle=b_{0}^{\top} b|n\rangle=n|n\rangle
$$

$$
|\alpha\rangle=\sum\left(\frac{\alpha^{n}}{\sqrt{n!}}\right) \underbrace{|n\rangle}_{\substack{\text { eigentale ot aumber } \\ \text { operalor }}}
$$

Linear combination of stiter uit different paride number
ampliunde to be in state $|n\rangle$

$$
\begin{aligned}
& \phi_{n}(\alpha)=\langle n \mid \alpha\rangle=\frac{\alpha^{n}}{\sqrt{n!}} \\
&\langle\bar{\alpha}|=\sum\langle m| \frac{\alpha^{m}}{\sqrt{n!}} \\
&\langle\bar{\alpha} \mid m\rangle=\frac{\bar{\alpha}^{m}}{\sqrt{m!}} \quad 1=\sum|n\rangle\langle n| \\
&\langle\bar{\alpha} \mid \alpha\rangle=\sum \frac{\bar{\alpha}^{m}}{\sqrt{m}} \frac{\delta_{m n}}{\langle m \mid n\rangle} \frac{\alpha^{n}}{n!}=\sum \frac{(\bar{\alpha} \alpha)^{n}}{n!}=e^{\bar{\alpha} \alpha} \\
&\langle\bar{\alpha} \mid \alpha\rangle=e^{\bar{\alpha} \alpha} \quad \text { exponertide ovelup }
\end{aligned}
$$

$$
\text { Gloube stio }=\frac{1}{\sqrt{\alpha \alpha}}|\alpha\rangle=e^{-\frac{\bar{\alpha} \alpha}{2}} e^{b^{+} \alpha}|0\rangle
$$

$$
p(n)=\frac{|\langle n \mid \alpha\rangle|^{2}}{\langle\bar{\alpha} \mid \alpha\rangle}=\frac{(\bar{\alpha} \alpha)^{n}}{n!} e^{-\bar{\alpha} \alpha} \quad \text { Poisson d.sth. }
$$

$$
\alpha=\sqrt{n_{0}} e^{i \theta} \quad p(n)=\left[\frac{\left(n_{0}\right)^{n} e^{-n_{0}}}{n!}\right]
$$

$$
\langle\hat{n}\rangle=\sum n p(n)=\sum n \frac{(\bar{\alpha} \alpha)^{n}}{n!} e^{-\bar{\alpha} \alpha}
$$

$$
=\sum \frac{(\alpha \alpha)^{n}}{(n-1)!} e^{-\bar{\alpha} \alpha}=\alpha \alpha \sum \frac{(\alpha \alpha \alpha)^{n-1}}{(n-1)^{-2 \alpha}} e^{-2}
$$

$$
=\bar{\alpha} \alpha=n_{0}
$$

$$
\left\langle n^{2}\right\rangle-\langle n\rangle^{2}=n_{0}
$$

$$
\begin{aligned}
& \text { e.g } n_{0} \sim 10^{23} \sqrt{\delta n^{2}} \sim 10^{11} \\
& \frac{\sqrt{\delta n^{2}}}{\langle n\rangle} \sim \frac{1}{10^{11}} \sim 10^{-11}
\end{aligned}
$$

$$
\begin{aligned}
\langle\bar{\alpha}|: A\left[b^{+}, b\right]:|\alpha\rangle & =A[\bar{\alpha}, \alpha]\langle\bar{\alpha} \mid \alpha\rangle \\
& =A[\bar{\alpha}, \alpha] e^{\bar{\alpha} \alpha}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\langle\alpha|: A\left[b^{+}, b\right]:|\alpha\rangle}{\langle\bar{\alpha} \mid \alpha\rangle}=\frac{A}{A}\{\bar{\alpha}, \alpha] \\
& \text { Operator uit fields } \\
& \text { repioced by a -numbers } \\
& : H\left[b^{+}, b\right): \longrightarrow: K\{\bar{\alpha}, \alpha]:
\end{aligned}
$$

operctor
aumber
Ampliundes $\longrightarrow P$ ote integralo.

