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7.6 Response functions 215

so that

i2
δ ln S[φ]

δφ(2)δφ(1)
= 〈ψ0|T{Sρ(1)ρ(2)}|ψ0〉

S[φ]
− 〈ψ0|Sρ(1)|ψ0〉

S[φ]
〈ψ0|Sρ(2)|ψ0〉

S[φ]

= 〈Tρ(1)ρ(2)〉 − 〈ρ(1)〉〈ρ(2)〉
= 〈T(ρ(1) − 〈ρ(1)〉)(ρ(2) − 〈ρ(2)〉) = 〈Tδρ(1)δρ(2)〉〉. (7.192)

With this result and (7.82), we can now identify

δ2 ln S [φ]
δφ(2)δφ(1) = Tδρ(1)δρ(2) = 1 2 .

(7.193)

7.6.1 Magnetic susceptibility of non-interacting electron gas

One of the fundamental qualities of a Fermi liquid is its non-local response to an applied
field. Suppose, for example, that one introduces a localized delta-function disturbance in
the magnetic field, δBz(x) = Bδ3(x). Since the fermions have a characteristic wavevector
of order kF , this local disturbance will “heal” over a length scale of order l ∼ 1/kF . Indeed,
since the maximum wavevector for low-energy particle–hole excitations is sharply cut off
at 2kF , the response produces oscillations in the spin density with a wavelength λ = 2π/kF

that decay gradually from the site of the disturbance. These oscillations are called Friedel
oscillations (Figure 7.5). In the case of the example just cited, the change in the spin density
in response to the shift in the chemical potential is given by

δM(%x) = χs(%x)B, (7.194)

-–2
–1

0
1

2

Bδ3(x)

kF r
2π

Friedel oscillations in the spin density, in response to a delta-function disturbance in the magnetic field at the origin.
These oscillations may be calculated from the Fourier transform of the Lindhard function.

!Fig. 7.5



216 Zero-temperature Feynman diagrams

where

χs(!x) =
∫

q
χ (q, ω = 0)ei!q·!x (7.195)

is the Fourier transform of the dynamical spin susceptibility. We shall now calculate this
quantity as an example of the application of Feynman diagrams.

From the interaction in (7.168), the magnetization is given by

!M(x) =
∫

d4x′χ(x − x′)!B(x′), (7.196)

where

χ
ab

(x) = i〈φ|[σ a(x), σ b(0)]|φ〉θ (t). (7.197)

The electron fluid mediates this non-local response. If we Fourier transform this expres-
sion, then !M(q) = χ(q)!B(q), where (in a relativistic shorthand)

χab(q) = iµ2
B

∫
d4x〈φ|[σ a(x), σ b(0)]|φ〉θ (t)e−iq·x. (7.198)

We can relate χab(!q, ν) = −iχT
ab(!q, ν + iδ), where the time-ordered Green’s function is

given by

χT
ab(q) = µ2

B

k+q

k

bσ σ a

= −µ2
B

k

dω
2π

2δabG(k+q)G(k)

Tr σaG(k + q)σbG(k) = δabχ
T (q).

(7.199)

The susceptibility χT (q) is then

χT (q) = −2µ2
B

∫

k

dω

2π

[
1

ω + ν − ε̃k+q

1
ω − ε̃k

]
, (7.200)

where we have invoked the notation ε̃k = εk − iδsgn(εk). The term inside the square
brackets has two poles, at ω = ε̃k and at ω = ε̃k+q − ν:

∫

ω
=

∫
dω

2π

1
(ε̃k+q − ε̃k) − ν

[
1

ω + ν − εk+q + iδk+q
− 1

ω − εk + iδk

]
.

We may carry out the frequency integral by completing the contour in the upper half-plane.
Each Green’s function gives a contribution 2π i × Fermi function, so that

χT (q) = −2iµ2
B

∫

k

fk+q − fk
(ε̃k+q − ε̃k) − ν

, (7.201)

so that the dynamical susceptibility χ (q, ν) = −iχT (q, ν + iδ) is given by

χ (q, ν + iδ) = 2µ2
B

∫

k

fk+q − fk
ν − (εk+q − εk) + iδ

. (7.202)

dynamical spin susceptibility
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There are a number of important pieces of physics encoded in the above expression that
deserve special discussion:

• Spin conservation. The total spin of the system is conserved, so that the application
of a strictly uniform magnetic field to the fluid cannot change the total magnetization.
Indeed, in keeping with this expectation, if we take !q → 0 we find lim!q→0 χ (!q, ν) = 0.

• Static susceptibility. When we take the limit ν → 0, we obtain the magnetization
response to a spatially varying magnetic field. The static susceptibility is given by

χ (q) = 2µ2
B

∫

k

fk − fk+q

(εk+q − εk)
. (7.203)

This response is finite, because the spins can always redistribute themselves in response
to a non-uniform field. When we take the wavelength of the applied field to infinity,
i.e. q → 0, we recover the Pauli susceptibililty:

χ → 2µ2
B

∫

k

(
−df (ε)

dε

)
= 2µ2

B

∫

k
δ(εk) = 2µ2

BN(0), (7.204)

where N(0) = mkF
2π2 is the density of states per spin. The detailed momentum-dependent

static susceptibility can be calculated (see Section 7.6.2), and is given by

χ (q) = 2µ2
BN(0)F(

q
2kF

)

F(x) = 1
4x

(1 − x2); ln
∣∣∣∣
1 + x
1 − x

∣∣∣∣ + 1
2

. (7.205)

The function F(x) is known as the Lindhard function [5]; see Figure 7.6. It has the
property that F(0) = 1, while F′(x) has a weak logarithmic singularity at |x| = 1.

• Dissipation and the imaginary part of the susceptibility. The full dynamical spin
susceptibility has both a real and an imaginary part, given by

χ (q, ν) = χ ′(q, ν) + iχ ′′(q, ν),

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.2

0.4

0.6

0.8

1
F

q

2kF

q/(2kF)

The Lindhard function. The Fourier transform of this function governs the magnetic response of a non-interacting
metal to an applied field. Notice the weak singularity around q/(2kF) = 1 that results from the match between
the Fermi surface and the wavevector of the magnetic response.

!Fig. 7.6
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χ (q, ν)

ν/(4 F)

2

1

2

0

q/(2kF)

1

F

q ~ 0

q ~ 2k

!Fig. 7.7 Density plot of the imaginary part of the dynamical spin susceptibility calculated from (7.212), showing the band of
width 2kF that spreads up to higher energies. Excitations on the left side of the band correspond to low-momentum-
transfer excitations of electrons from just beneath the Fermi surface to just above the Fermi surface. Excitations on the
right-hand side of the band correspond to high-momentum-transfer processes, right across the Fermi surface.

where the imaginary part determines the dissipative part of the magnetic response. The
dissipation arises because an applied magnetic field generates a cloud of electron–hole
pairs which carry away the energy. If we use the Cauchy–Dirac relation 1/(x + iδ) =
P(1/x) − iπδ(x) in (7.202 ), we obtain

χ ′′(q, ν) = 2µ2
B

∫

k
πδ[ν − (εk+q − εk)](fk − fk+q). (7.206)

This quantity defines the density of states of particle–hole excitations. The excitation
energy of a particle–hole pair is given by

εk+q − εk = q2

2m
+ qk

m
cos θ ,

where θ is the angle between k and q. This quantity is largest when θ = 0, k = kF , and
smallest when θ = π , k = kF , so that

q2

2m
+ qkF

m
> ν >

q2

2m
− qkF

m
defines a band of allowed wavevectors where the particle–hole density of states is finite,
as shown in Figure 7.7. Outside this region, χ0(q, ν) is purely real.

7.6.2 Derivation of the Lindhard function

The dynamical spin susceptibility

χ (q, ν) = 2µ2
B

∫

k

fk − fk+q

(εk+q − εk − ν)
(7.207)

can be rewritten as

χ (q, ν) = 2µ2
B

∫

k
fk

[
1

(εk+q − εk − ν)
+ 1

(εk−q − εk + ν)

]
. (7.208)
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Written out explicity, this is

χ (q, ν) = 2µ2
B

∫ kF

0

k2dk
2π2

∫ 1

−1

d cos θ

2

[
1

(εk+q − εk − ν)
+ ((ν, q) → −(ν, q))

]
.

By replacing εk → k2

2m − µ and rescaling x = k/kF , q̃ = q/(2kF), and ν̃ = ν/(4εF), we
obtain χ (q, ν) = 2µ2

BN(0)F(q̃, ν̃), where

F(q̃, ν̃) = 1
4q̃

∫ 1

0
x2dx

∫ 1

−1
dc

[
1

xc + q̃ − ν̃
q̃

+ (ν → −ν)

]

(7.209)

is the Lindhard function. Carrying out the integral over angle, we obtain

F(q̃, ν̃) = 1
4q̃

∫ 1

0
x dx

(

ln

[
q̃ − ν̃

q̃ + x

q̃ − ν̃
q̃ − x

]

+ (ν̃ → −ν̃)

)

= 1
8q̃

([

1 −
(

q̃ − ν̃

q̃

)2
]

ln

[
q̃ − ν̃

q̃ + 1

q̃ − ν̃
q̃ − 1

]

+ (ν̃ → −ν̃)

)

+ 1
2

. (7.210)

Its static limit, F(q̃) = F(q̃, ν̃ = 0),

F(q̃) = 1
4q̃

([
1 − q̃2

]
ln

∣∣∣∣
q̃ + 1
q̃ − 1

∣∣∣∣

)
+ 1

2
, (7.211)

has the properties that F(0) = 1 and dF/dx is singular at x = 1, as shown in Figure 7.6.
The imaginary part of χ (q, ν + iδ) is given by

χ ′′(q, ν) = 2µ2
BN(0) × π

8q̃

{(

1 −
[

q̃ − ν̃

q̃

]2
)

θ

[

1 −
[

q̃ − ν̃

q̃

]2
]

− (ν → −ν)

}

,

(7.212)
and is plotted in Figure 7.7.

7.7 The RPA (large-N) electron gas

Although the Feynman diagram approach gives us a way to generate all perturbative correc-
tions, we still need a way to select the physically important diagrams. In general, as we have
seen from the previous examples, it is important to re-sum particular classes of diagrams
to obtain a physical result. What principles can be used to select classes of diagrams?

Frequently, however, there is no obvious choice of small parameter, in which case one
needs an alternative strategy. For example, in the electron gas we could select diagrams
according to the power of rs entering the diagram. This would give us a high-density expan-
sion of the properties – but what if we would like to examine a low-density electron gas in
a controlled way?

One way to select Feynman diagrams in a system with no natural small parameter is
to take the so-called large-N limit. This involves generalizing some internal degree of
freedom so that it has N components. Examples include:

X gu 2N o Fla 5
5 9 2hr D 4Er
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• the hydrogen atom in N dimensions
• an electron gas with N = 2S + 1 spin components
• spin systems with spin S in the limit that S becomes large
• quantum chromodynamics with N rather than three colours.

In each of these cases, the limit N → ∞ corresponds to a new kind of semiclassical limit,
where certain variables cease to undergo quantum fluctuations. The parameter 1/N plays
the role of an effective !:

1
N

∼ !. (7.213)

This does not, however, mean that quantum effects have been lost, merely that their
macroscopic consequences can be lumped into certain semiclassical variables.

We shall now examine the second of these examples. The idea is to take an interacting
Fermi gas where each fermion has N = 2S + 1 possible spin components. The interacting
Hamiltonian is still written

H =
∑

k,σ

εkc†
kσ ckσ + 1

2

∑
Vqc†

k+qσ c†
k′−qσ ′ck′σ ′ckσ , (7.214)

but now the spin summations run over N = 2S + 1 values rather than just two. As N is
made very large, it is important that both the kinetic energy and the interaction energy scale
extensively with N. For this reason, the original interaction Vq is rescaled, writing

Vq = 1
N

Vq, (7.215)

where it is understood that, as N → ∞, V is to be kept fixed. The idea is to now calculate
quantities as an expansion in powers of 1/N, and at the end of the calculation to give N
the value of specific interest, in our case N = 2. For example, if we are interested in a
Coulomb gas of spin– 1

2 electrons, then we study the family of problems where

Vq = 1
N

ẽ2

q2 = Vq

N
(7.216)

and ẽ2 = 2e2/ε0. At the end, we set N = 2, boldly hoping that the key features of the
solution around N = 2 will be shared by the entire family of models. In practice, this only
holds true if the density of the electron gas is large enough to avoid instabilities such as
the formation of Wigner crystal. For historical reasons, the approxation that appears in the
large-N limit is called the random phase approximation (RPA), a method developed during
the 1950s. The early version of the RPA was developed by David Bohm and David Pines
[6], while its reformulation in a diagrammatic language was later given by Hubbard [7].2

The large-N treatment of the electron gas recovers the RPA electron gas in a controlled
approximation.

With the above substitution, the Feynman rules are unchanged, except that now we
associate a factor 1/N with each interaction vertex. Before we start, however, there are
a few preliminaries; in particular, we need to know how to handle long-range Coulomb

2 A more detailed discussion of this early history can be found in the book by Nozières and Pines [8].


