Exercise 1. Path Integrals. (Due Fri 17 Feb.)

1. In this problem consider $\hbar = 1$. Suppose $|0\rangle$ is the ground-state of a harmonic oscillator problem, where $b|0\rangle = 0$. Consider the state formed by simultaneously translating this state in momentum and position space as follows:

$$|p, x\rangle = \exp\left[-i(x\hat{p} - p\hat{x})\right]|0\rangle.$$

By rewriting $\hat{b} = (\hat{x} + i\hat{p})/\sqrt{2}$, $z = (x + ip)/\sqrt{2}$, show that this state can be rewritting as

$$|p,x\rangle = e^{b^{\dagger}z - \bar{z}b}|0\rangle$$

Using the relation $e^{A+B} = e^A e^B e^{-\frac{1}{2}[A,B]}$, provided [A, [A, B]] = [B, [A, B]] = 0, show that $|p, x\rangle$ is equal to a normalized coherent state

$$|p,x\rangle \equiv |z\rangle e^{-\bar{z}z/2} = e^{b^{\dagger}z}|0\rangle e^{-\frac{1}{2}\bar{z}z}$$

showing that the coherent state $|z\rangle$ represents a minimum uncertainty wavepacket centered at (q, p) in phase space.

2. (a) Suppose $H = \epsilon c^{\dagger} c$ the Hamiltonian for an energy level ϵ that can be occupied by a single fermion. Consider the approximation to the partition function obtained by first dividing up the period $\tau \in [0, \beta]$ into N equal time-slices,

$$Z_N = \operatorname{Tr}[(e^{-\Delta \tau H})^N], \qquad (1)$$

which is given by

$$Z_{N} = \int \prod_{j=1}^{N} d\bar{c}_{j} dc_{j} \exp\left[-S_{N}\right]$$
$$S_{N} = \sum_{j=1}^{N} \Delta \tau \left[\bar{c}_{j} (c_{j} - c_{j-1}) / \Delta \tau + \epsilon \bar{c}_{j} c_{j-1}\right].$$
(2)

(a) Show that Z_3 can be written as a "toy functional integral",

$$Z_{3} = \int d\bar{c}_{3} dc_{3} d\bar{c}_{2} dc_{2} d\bar{c}_{1} dc_{1} \exp\left\{-(\bar{c}_{3}, \bar{c}_{2}, \bar{c}_{1})\begin{pmatrix}1 & -\alpha & 0\\0 & 1 & -\alpha\\\alpha & 0 & 1\end{pmatrix}\begin{pmatrix}c_{3}\\c_{2}\\c_{1}\end{pmatrix}\right\},$$
(3)

where $\alpha = 1 - \Delta \tau \epsilon$. In this formula, the discrete time-line is labelled as follows,

where (\bar{c}_j, c_j) are the conjugate Grassman variables at each discrete time $\tau_j = j\Delta\tau$.

- (b) Evaluate Z_3 .
- (c) Generalize the result to N time slices and obtain an expression for Z_N . What is the limiting value of your result as $N \to \infty$?
- (d) Repeat the calculation for a boson $H=\epsilon b^{\dagger}b$
- 3. A system of weakly interacting superfluid bosons is described by the action

$$S = \int_0^\beta d\tau d^3 x \left[\bar{\psi} \left(\partial_\tau - \frac{\hbar^2}{2m} \nabla^2 - \mu \right) \psi + \frac{g}{2} |\psi|^4 \right].$$
(5)

- (a) Ignoring fluctuations of the Bose Field, sketch the Free energy $(F = S/\beta)$ as a function of the magnitude of a uniform Bose field, for $\mu > 0$ $\mu = 0$ and $\mu < 0$.
- (b) Assuming you can ignore fluctuations of the Bose field, when $\mu > 0$, what is the uniform equilibrium value of the Bose field $\psi(x)$?
- (c) What is the corresponding coherent state?
- (d) Assume that the superfluid lives on a torus. Suppose the phase of the wavefunction winds through *l* turns as one goes around the torus in the *x* direction. Write down the wavefunction for this state. What is the superfluid velocity of this state and why is the superflow persistent?
- (e) (Harder.) In class we considered the fluctuations in a "cartesian" basis, expanding the action to Gaussian order in terms of $\delta\psi(x)$ and $\delta\bar{\psi}(x)$. Carry out the calculation in the "radial" basis i.e write the action in terms $\psi(x) = r(x)e^{i\phi(x)}$ and expand it to Gaussian order in $\delta r(x)$ and $\delta\phi(x)$. (Hint, choose $\phi_0 = 0$, so that $\delta\psi = \delta r(x) + ir_0\delta\phi(x) + O(\delta\psi^2)$. Note also that total derivatives, like $\int_0^\beta r\partial_\tau r = \frac{1}{2}\int_0^\beta \partial_\tau (r^2) = 0$ vanish). Confirm that you obtain the same results for the low-lying excitation spectrum as we obtained in class.