MANY BODY PHYSICS: 621. Spring 2023

Exercise 1. Path Integrals. (Due Fri 17 Feb.)

1. In this problem consider $\hbar=1$. Suppose $|0\rangle$ is the ground-state of a harmonic oscillator problem, where $b|0\rangle=0$. Consider the state formed by simultaneously translating this state in momentum and position space as follows:

$$
|p, x\rangle=\exp [-i(x \hat{p}-p \hat{x})]|0\rangle .
$$

By rewriting $\hat{b}=(\hat{x}+i \hat{p}) / \sqrt{2}, z=(x+i p) / \sqrt{2}$, show that this state can be rewritting as

$$
|p, x\rangle=e^{b^{\hbar} z-\bar{z} b}|0\rangle
$$

Using the relation $e^{A+B}=e^{A} e^{B} e^{-\frac{1}{2}[A, B]}$, provided $[A,[A, B]]=[B,[A, B]]=0$, show that $|p, x\rangle$ is equal to a normalized coherent state

$$
|p, x\rangle \equiv|z\rangle e^{-\bar{z} z / 2}=e^{b^{\dagger} z}|0\rangle e^{-\frac{1}{2} \bar{z} z}
$$

showing that the coherent state $|z\rangle$ represents a minimum uncertainty wavepacket centered at (q, p) in phase space.
2. (a) Suppose $H=\epsilon c^{\dagger} c$ the Hamiltonian for an energy level ϵ that can be occupied by a single fermion. Consider the approximation to the partition function obtained by first dividing up the period $\tau \in[0, \beta]$ into N equal time-slices,

$$
\begin{equation*}
Z_{N}=\operatorname{Tr}\left[\left(e^{-\Delta \tau H}\right)^{N}\right], \tag{1}
\end{equation*}
$$

which is given by

$$
\begin{align*}
Z_{N} & =\int \prod_{j=1}^{N} d \bar{c}_{j} d c_{j} \exp \left[-S_{N}\right] \\
S_{N} & =\sum_{j=1}^{N} \Delta \tau\left[\bar{c}_{j}\left(c_{j}-c_{j-1}\right) / \Delta \tau+\epsilon \bar{c}_{j} c_{j-1}\right] \tag{2}
\end{align*}
$$

(a) Show that Z_{3} can be written as a "toy functional integral",

$$
Z_{3}=\int d \bar{c}_{3} d c_{3} d \bar{c}_{2} d c_{2} d \bar{c}_{1} d c_{1} \exp \left\{-\left(\bar{c}_{3}, \bar{c}_{2}, \bar{c}_{1}\right)\left(\begin{array}{ccc}
1 & -\alpha & 0 \tag{3}\\
0 & 1 & -\alpha \\
\alpha & 0 & 1
\end{array}\right)\left(\begin{array}{l}
c_{3} \\
c_{2} \\
c_{1}
\end{array}\right)\right\}
$$

where $\alpha=1-\Delta \tau \epsilon$. In this formula, the discrete time-line is labelled as follows,

where $\left.\left(\bar{c}_{j}, c_{j}\right)\right)$ are the conjugate Grassman variables at each discrete time $\tau_{j}=$ $j \Delta \tau$.
(b) Evaluate Z_{3}.
(c) Generalize the result to N time slices and obtain an expression for Z_{N}. What is the limiting value of your result as $N \rightarrow \infty$?
(d) Repeat the calculation for a boson $H=\epsilon b^{\dagger} b$
3. A system of weakly interacting superfluid bosons is described by the action

$$
\begin{equation*}
S=\int_{0}^{\beta} d \tau d^{3} x\left[\bar{\psi}\left(\partial_{\tau}-\frac{\hbar^{2}}{2 m} \nabla^{2}-\mu\right) \psi+\frac{g}{2}|\psi|^{4}\right] . \tag{5}
\end{equation*}
$$

(a) Ignoring fluctuations of the Bose Field, sketch the Free energy $(F=S / \beta)$ as a function of the magnitude of a uniform Bose field, for $\mu>0 \mu=0$ and $\mu<0$.
(b) Assuming you can ignore fluctuations of the Bose field, when $\mu>0$, what is the uniform equilibrium value of the Bose field $\psi(x)$?
(c) What is the corresponding coherent state?
(d) Assume that the superfluid lives on a torus. Suppose the phase of the wavefunction winds through l turns as one goes around the torus in the x direction. Write down the wavefunction for this state. What is the superfluid velocity of this state and why is the superflow persistent?
(e) (Harder.) In class we considered the fluctuations in a "cartesian" basis, expanding the action to Gaussian order in terms of $\delta \psi(x)$ and $\delta \bar{\psi}(x)$. Carry out the calculation in the "radial" basis - i.e write the action in terms $\psi(x)=r(x) e^{i \phi(x)}$ and expand it to Gaussian order in $\delta r(x)$ and $\delta \phi(x)$. (Hint, choose $\phi_{0}=0$, so that $\delta \psi=\delta r(x)+i r_{0} \delta \phi(x)+O\left(\delta \psi^{2}\right)$. Note also that total derivatives, like $\int_{0}^{\beta} r \partial_{\tau} r=\frac{1}{2} \int_{0}^{\beta} \partial_{\tau}\left(r^{2}\right)=0$ vanish). Confirm that you obtain the same results for the low-lying excitation spectrum as we obtained in class.

