

Notice hat $X_n = k_n \ell^2 = n \left(\frac{2\pi}{L_y}\right) \ell^2 \ll \sqrt{n} \ell.$

In the . nth London level here are.

$$L_{x}/\ell^{2}$$

$$N = \sum_{k} 1 = L_{y} \int \frac{dk}{2\pi} = \frac{L_{x}L_{y}}{2\pi\ell^{2}}$$

$$= \frac{AeB}{2\pi k} = \frac{AB}{(h/e)}$$

$$N = \left(\frac{AB}{\Phi_{o}}\right) = \frac{\Phi}{\Phi_{o}} = N_{\Phi}$$

For v levels N = vNp.

Dynamics .

$$\Psi(r,t) = \frac{L_y}{2\pi} \sum_{n=1}^{\infty} \int \frac{dk}{2\pi} = \frac{Q_n(k)}{4\pi} \frac{\Psi(r,t)}{4\pi} = \frac{-i(n+\frac{1}{4})\omega_k t}{2\pi}$$

wave packet.

$$\mathcal{L}(\vec{r}, t + \frac{2\pi}{\omega_e}) = -\mathcal{L}(\vec{r}, t)$$

semiclassical motion .

Current flowing in single Landou level state
$$4_{kn}$$
?
Warm up problem for the case with an
electric field.
Heuristically $I_y = -e_y = -e_y \frac{\partial E}{K} = 0$

Microscopically:

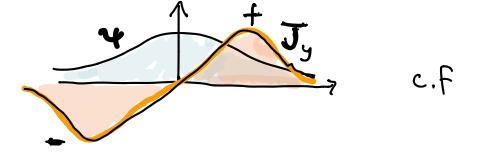
$$\Psi_{k} = \int \Pi^{n/2} e^{iky} e^{-\frac{1}{2e^{1}}(x-ke^{2})}$$

Lovest London Level.

 $\langle J(x,y) \rangle = - \underbrace{e}_{\mathcal{M}} \Psi_{nk}^{*}(x,y) \int -ik \overrightarrow{\nabla}_{y} + e \overrightarrow{A}_{y} \Psi_{nk}(x,y) \int -ik \overrightarrow{\nabla}_{y} + e \overrightarrow{A}_{y} \Psi_{nk}(x,y)$

$$\langle I_{y} \rangle = \int_{0}^{L_{x}} \langle J_{y}(x,y) \rangle dx$$

= $-\frac{e}{m} \frac{1}{\sqrt{\pi} \ell L_{y}} \int dx e^{-\frac{1}{\ell} (x-k\ell^{n})^{2}} (kk-\ell kx) - \ell k(x-\ell k\ell^{2})$



 $(\exists_y)^2 = e \omega_e \frac{1}{\sqrt{\pi}e} \frac{1}{\sqrt{y}} \int dx e^{-\frac{1}{e^2}(x-ke^2)} (x-ke^2) = 0.$ As expected

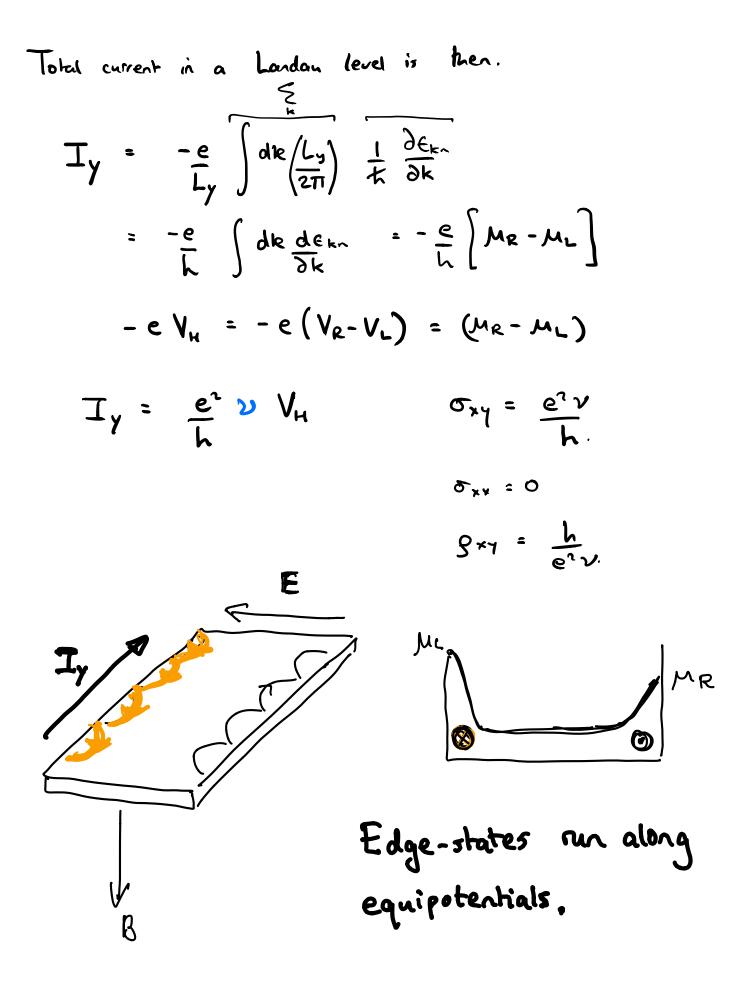
$$\begin{split} \begin{array}{c} \begin{array}{c} \begin{array}{c} \underline{Current} & \underline{n} & \underline{a} & \overline{field} \\ \hline E & = \left[E_{x_{1}} \circ, \circ \right] \\ U(x) & = & eEx \\ \end{array} \\ \begin{array}{c} U(x) & = & eEx \\ \end{array} \\ \begin{array}{c} \begin{array}{c} u \\ \end{array} \\ \begin{array}{c} \underbrace{P_{x}^{x}} \\ + & \underline{t} \\ \hline \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} + & \underline{t} \\ \frac{1}{2} \\ mu_{c}^{2} \\ \end{array} \\ \begin{array}{c} \left(x^{-} kl^{2} \right)^{2} \\ + eEx \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} + & \underline{t} \\ \frac{1}{2} \\ mu_{c}^{2} \\ \end{array} \\ \begin{array}{c} \left(x^{-} 2kl^{2} x + (kl^{2})^{2} \right) \\ + eEx \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} + & \underline{t} \\ \frac{1}{2} \\ mu_{c}^{2} \\ \end{array} \\ \begin{array}{c} \left(kl^{2} - 2kl^{2} x + (kl^{2})^{2} \right) \\ + eEx \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} + & \frac{1}{2} \\ mu_{c}^{2} \\ \end{array} \\ \begin{array}{c} \left(kl^{2} - 2kl^{2} x + (kl^{2})^{2} \right) \\ \end{array} \\ \begin{array}{c} + \frac{1}{2} \\ mu_{c}^{2} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} + & \frac{1}{2} \\ mu_{c}^{2} \\ \end{array} \\ \begin{array}{c} \left(kl^{2} - \frac{eE}{mu_{c}} \right) \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} + & \frac{1}{2} \\ \frac{1}{2} \\ mu_{c}^{2} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} + & \frac{1}{2} \\ \frac{1}{2} \\ mu_{c}^{2} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} + & \frac{1}{2} \\ \frac{1}{2} \\ \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} + & \frac{1}{2} \\ \frac{1}{2} \\ mu_{c}^{2} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} + \\ \frac{1}{2} \\ \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} + \\ \frac{1}{2} \\ \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} + \\ \frac{1}{2} \\ \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \frac{P_{x}^{2}}{2m} \\ \end{array} \\ \end{array} \\$$

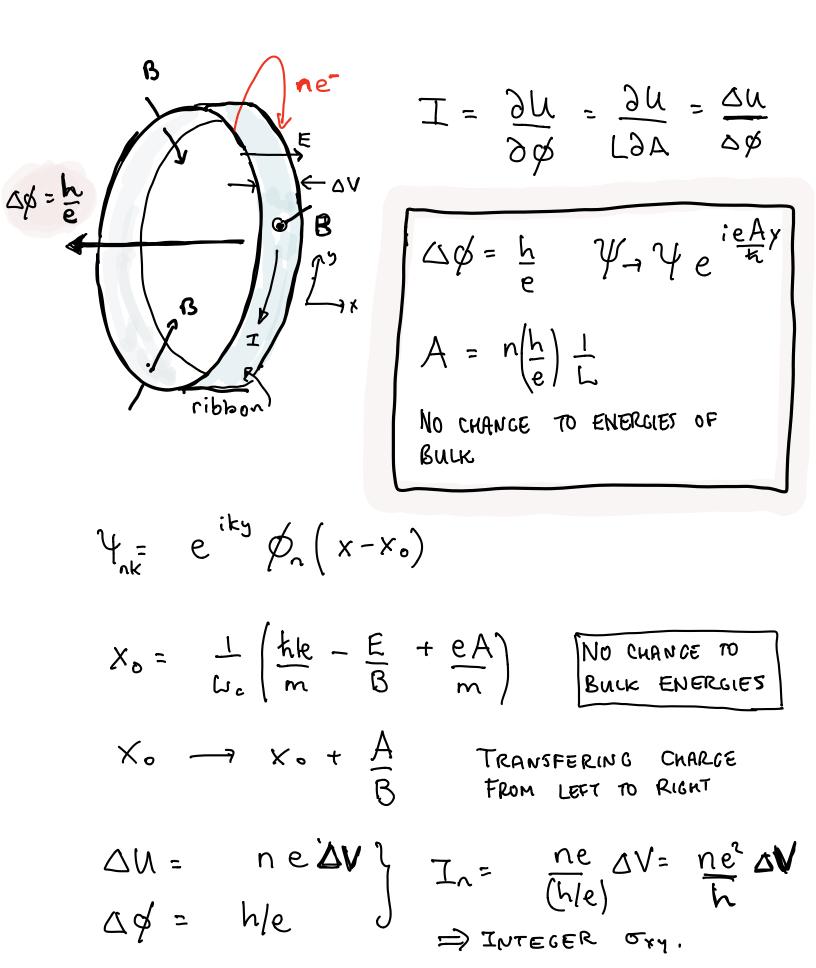
$$E_{kn} = \frac{\pi}{4} v_{e} \left(n + \frac{1}{2}\right) + eEX_{k}' + \frac{1}{2} mv^{2}$$

$$V_{y} = \frac{1}{4} \frac{\partial e_{kn}}{\partial k} = \frac{1}{4} \frac{\partial}{\partial k} \left(eEke^{2}\right) = \frac{eEC^{2}}{4} = \left(\frac{E}{B}\right) = \tilde{v}$$

$$T_{y} = -nev_{y}L_{x} = -(\underbrace{e}_{L_{x}L_{y}}L_{x}\overline{V}) = -e\overline{V}$$

$$\begin{aligned} \text{Microscopically:} & -eB\left(X - \left(X_{k}^{\dagger} + \frac{eE}{m\omega_{c}^{\dagger}}\right)\right) \\ & = -e \int_{m} \frac{1}{\sqrt{\pi}} eL_{y} \int_{dx} dx e^{-\frac{1}{e^{\tau}}\left(x - X_{k}^{\dagger}\right)^{t}} \int_{dx} tke - eB\left(x\right) \\ & = -\frac{e}{m} \int_{\overline{\pi}} \frac{1}{\sqrt{\pi}} eL_{y} \int_{dx} dx e^{-\frac{1}{e^{\tau}}\left(x - X_{k}^{\dagger}\right)} \int_{dx} tke - eB\left(x - X_{k}^{\dagger}\right) \\ & = -\frac{e}{m} \int_{\overline{\pi}} \frac{1}{\sqrt{\pi}} eL_{y} \int_{dx} dx e^{-\frac{1}{e^{\tau}}\left(x - X_{k}^{\dagger}\right)} \int_{dx} tke - eB\left(x - X_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eB\left(xe^{t} - eE_{k}^{\dagger}\right)\right) \\ & = eB\left(xe^{t} - eE_{k}^{\dagger}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eE_{k}^{\dagger}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eE_{k}^{\dagger}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eE_{k}^{\dagger}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eE_{k}^{\dagger}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eE_{k}^{\dagger}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eE_{k}^{\dagger}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eE_{k}^{\dagger}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eE_{k}^{\dagger}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eE_{k}^{\dagger}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eE_{k}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eE_{k}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}^{\dagger}\right) \\ & = eB\left(xe^{t} - eE_{k}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}\right) \\ & = eB\left(xe^{t} - eE_{k}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}\right) \\ & = eB\left(xe^{t} - eE_{k}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}\right) \\ & = eB\left(xe^{t} - eE_{k}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}\right) \\ & = eB\left(xe^{t} - eE_{k}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}\right) \\ & = eB\left(xe^{t} - eE_{k}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}\right) \\ & = eB\left(xe^{t} - eE_{k}\right) \int_{dx} tke - eB\left(xe^{t} - eE_{k}\right) \\ & = eB\left(xe^{t} - eE_{$$



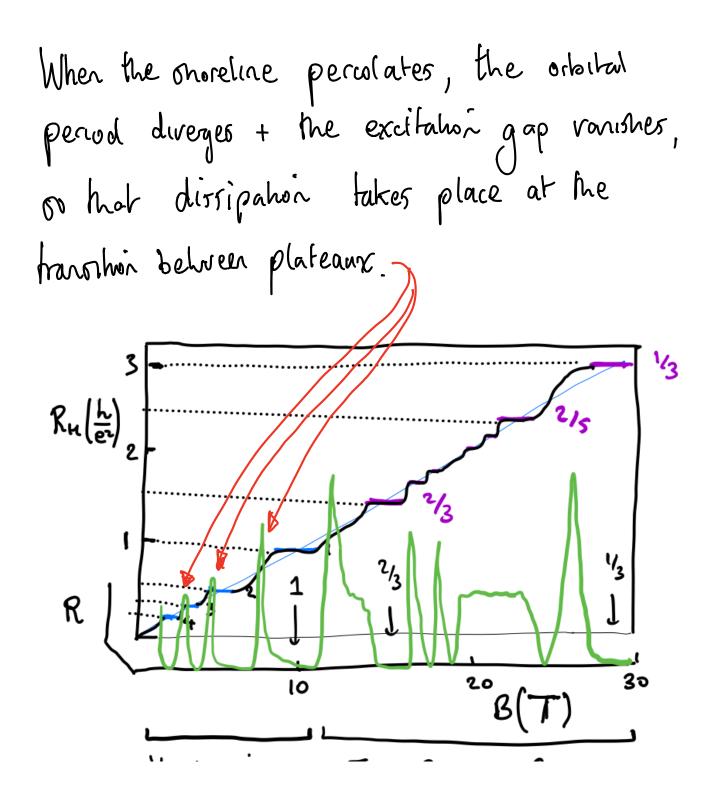


PERCOLATION VICTURE · Disorder is essential for the IQHE · Require a gap in the excitation spectrum LOCALLZED STATES Raise Er FIXED \rightarrow ORBIT Lover B PERLOD \sim equipotentials Raise Er Raise e f

PERCOLATION

Percolahon will occur 2

$$M_n^* = \left(n + \frac{1}{2}\right) t \omega_c$$



5. FRACTIONAL QUANTUM HALL EFFECT

- Early expts shared that for v < 1, Oxx & Try vanished, as expected from the perspective of the IQHE.
 However, with the invention of modulation doping in GaAs quantum wells, much higher quality samples were possible, with much less divorder.
- A Wigner crystel was expected for low enough et concentrations in pure sampler. Pinned by disorder it would be inoutating.
- 1982 Toui, Shörmer & Gossard discovered a QH plateau
 at v = 1/3, with OFx => 0 & Oxy = 1/3 e²/h.
- Tsui joked that it night be quarters! The effect did not involve quarter, but incredibly, the electrons in the r=1/3
 FQH state have indeed condensed into a state with fractional

- Many more fractions observed
- · Because or + o, this is a dissipationless state,

Recall
$$H = \left(\vec{p} + e\vec{A}\right)^2 = \vec{T}^2$$

Where

•

$$\vec{T} = (\Pi_{x}, \Pi_{y}) = \vec{p} + e \vec{A}(\vec{r})$$
MECHANICAL
MOMENTUM

This is a gauge-invariant quantity, but make the canonical
momentum,
$$Tl_x \& Tl_y \ do \ not \ commute$$

$$\begin{bmatrix} Tl_x, Tl_y \end{bmatrix} = \begin{bmatrix} p_x, eA_y \end{bmatrix} + \begin{bmatrix} eA_x, p_y \end{bmatrix}$$

$$= e\left(\begin{bmatrix} -th \partial_x, A_y \end{bmatrix} - \begin{bmatrix} -ih \partial_y, A_x \end{bmatrix}\right)$$

$$\begin{bmatrix} Tl_x, Tl_y \end{bmatrix} = -ihe \left(\begin{array}{c} \partial_x A_y - \partial_y A_x \end{array} \right) = iheB = \frac{ih^2}{e^2}$$

$$B_z = -B \ (\text{for convenience}) \ \left(\begin{array}{c} \frac{h}{eB} = e^2 \end{array} \right)$$