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and Schrieffer (1969), who showed how this model gives
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local moment and conduction electrons. The emergence
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process called superexchange: the virtual process in which
an electron or hole briefly migrates off the ion, to be
immediately replaced by another with a different spin. When
these processes are removed by the canonical transformation,
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local moment and the conduction electrons. This can be seen
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particle are in a spin-singlet. From second-order perturbation
theory, the energy of the singlet is lowered by an amount
−2J , where
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and the factor of two derives from the two ways a singlet
can emit an electron or hole into the continuum [1] and
V ∼ V (kF) is the hybridization matrix element near the
Fermi surface. For the symmetric Anderson model, where
!E1 = !EII = U/2, J = 4V 2/U .

If we introduce the electron spin-density operator &σ (0) =
1
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lattice, then the effective interaction has the form

HK = −2JPS=0 (41)

where PS=0 =
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2 &σ (0) · &Sf

]
is the singlet projection

operator. If we drop the constant term, then the effective
interaction induced by the virtual charge fluctuations must
have the form

HK = J &σ (0) · &Sf (42)

where &Sf is the spin of the localized moment. The complete
‘Kondo Model’, H = Hc + HK describing the conduction
electrons and their interaction with the local moment is

H =
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εkc
†
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c&kσ + J &σ (0) · &Sf (43)

2.2.3 The Kondo effect

The antiferromagnetic sign of the superexchange interac-
tion J in the Kondo Hamiltonian is the origin of the

spin-screening physics of the Kondo effect. The bare inter-
action is weak, but the spin fluctuations it induces have
the effect of antiscreening the interaction at low ener-
gies, renormalizing it to larger and larger values. To see
this, we follow an Anderson’s ‘Poor Man’s’ scaling pro-
cedure (Anderson, 1973, 1970), which takes advantage of
the observation that at small J the renormalization in the
Hamiltonian associated with the block-diagonalization pro-
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is the many-body ‘t-matrix’ associated with virtual transi-
tions into the high-energy subspace {H }. For the Kondo
model,
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where PH projects the intermediate state into the high-
energy subspace, while PL projects the initial state into
the low-energy subspace. There are two virtual scatter-
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involving a high-energy electron (I) or a high-energy
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’
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#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ

38

H =
X

|⇤k|<D

�kc†k⌅ck⌅ +

HI

z }| {
J(D)

X

|⇤k|,|⇤0k|<D

c†k�⇤⇥�⇥ · ⇤Sf

kα
σ

k’β

σ’

kα
σ

k’’λ

σ’’



“Poor Man’s” Scaling
Anderson and Yuval 1969, 

Anderson 1973

Chapter 16. c©Piers Coleman 2010

where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’
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#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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k’’
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#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
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]
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]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
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E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is
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]
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is
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]
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]
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In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1
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]
J2(σaσb)βα(S aS b)σ′σ
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]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by
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ab =

1
2
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ
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E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
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where
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
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E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑
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1
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]
J2(σbσa)βα(S aS b)σ′σ

38

Chapter 16. c©Piers Coleman 2010

where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
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[Tab(Ea) + Tab(Eb)]

where
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]
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1
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]
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
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λ∈|H〉
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H(I)aλH
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E − EHλ


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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ
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]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑
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]
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1
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]
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1
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]
J2(σaσb)βα(S aS b)σ′σ
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]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]
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1
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]
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is
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]
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =
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2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉
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H(I)aλH

(I)
λb

E − EHλ


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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =
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[Tab(Ea) + Tab(Eb)]

where
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E − EHλ


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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
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[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑
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H(I)aλH
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λb

E − EHλ


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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉
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H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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k’’
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#
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
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%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ

38

Chapter 16. c©Piers Coleman 2010

where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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k’’
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#
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
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[Tab(Ea) + Tab(Eb)]

where
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H(I)aλH
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E − EHλ


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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
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


where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is
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∑
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]
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]
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In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
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]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ
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1
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]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is
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∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ
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]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
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[Tab(Ea) + Tab(Eb)]

where
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
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1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑
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]
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
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[Tab(Ea) + Tab(Eb)]

where
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E − EHλ
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
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1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑
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1
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
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[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑
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
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑
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1
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]
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
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H(I)aλH
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E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
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1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑
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1
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is
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[
1
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]
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1
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]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
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[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
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1
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]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
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= −J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.103)

where we have assumed that the energies εk and εk′ are negligible compared with D. Adding (Eq.
16.102) and (Eq. 16.103) gives

δHint
k′βσ′;kασ = T̂ I + T II = −

J2ρδD
D

[σa,σb]βαS aS b

=
J2ρδD
D
'σβα'S σ′σ. (16.104)

In this way we see that the virtual emission of a high energy electron and hole generates an antifer-
romagnetic correction to the original Kondo coupling constant

J(D′) = J(D) + 2J2ρ
δD
D

High frequency spin fluctuations thus antiscreen the antiferrromagnetic interaction. If we introduce
the coupling constant g = ρJ, we see that it satisfies

∂g
∂ lnD

= β(g) = −2g2 + O(g3).

This is an example of a negative β function: a signature of an interaction which is weak at high
frequencies, but which grows as the energy scale is reduced. The local moment coupled to the
conduction sea is said to be asymptotically free. The solution to this scaling equation is

g(D′) =
go

1 − 2go ln(D/D′)
(16.105)

and if we introduce the scale
TK = D exp

[
−
1
2go

]
(16.106)

we see that this can be written
2g(D′) =

1
ln(D′/TK)

This is an example of a running coupling constant- a coupling constant whose strength depends on
the scale at which it is measured. (See Fig. 16.14).

Were we to take this equation literally, we would say that g diverges at the scale D′ = TK . This
interpretation is too literal, because the above scaling equation has only been calculated to order g2,
nevertheless, this result does show us that the Kondo interaction can only be treated perturbatively
at energy scales large compared with the Kondo temperature. We also see that once we have written
the coupling constant in terms of the Kondo temperature, all reference to the original cut-off energy
scale vanishes from the expression. This cut-off independence of the problem is an indication that
the physics of the Kondo problem does not depend on the high energy details of the model: there is
only one relevant energy scale, the Kondo temperature.
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
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where
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where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
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E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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= −J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.103)

where we have assumed that the energies εk and εk′ are negligible compared with D. Adding (Eq.
16.102) and (Eq. 16.103) gives

δHint
k′βσ′;kασ = T̂ I + T II = −

J2ρδD
D

[σa,σb]βαS aS b

=
J2ρδD
D
'σβα'S σ′σ. (16.104)

In this way we see that the virtual emission of a high energy electron and hole generates an antifer-
romagnetic correction to the original Kondo coupling constant

J(D′) = J(D) + 2J2ρ
δD
D

High frequency spin fluctuations thus antiscreen the antiferrromagnetic interaction. If we introduce
the coupling constant g = ρJ, we see that it satisfies

∂g
∂ lnD

= β(g) = −2g2 + O(g3).

This is an example of a negative β function: a signature of an interaction which is weak at high
frequencies, but which grows as the energy scale is reduced. The local moment coupled to the
conduction sea is said to be asymptotically free. The solution to this scaling equation is

g(D′) =
go

1 − 2go ln(D/D′)
(16.105)

and if we introduce the scale
TK = D exp

[
−
1
2go

]
(16.106)

we see that this can be written
2g(D′) =

1
ln(D′/TK)

This is an example of a running coupling constant- a coupling constant whose strength depends on
the scale at which it is measured. (See Fig. 16.14).

Were we to take this equation literally, we would say that g diverges at the scale D′ = TK . This
interpretation is too literal, because the above scaling equation has only been calculated to order g2,
nevertheless, this result does show us that the Kondo interaction can only be treated perturbatively
at energy scales large compared with the Kondo temperature. We also see that once we have written
the coupling constant in terms of the Kondo temperature, all reference to the original cut-off energy
scale vanishes from the expression. This cut-off independence of the problem is an indication that
the physics of the Kondo problem does not depend on the high energy details of the model: there is
only one relevant energy scale, the Kondo temperature.
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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= −J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.103)

where we have assumed that the energies εk and εk′ are negligible compared with D. Adding (Eq.
16.102) and (Eq. 16.103) gives

δHint
k′βσ′;kασ = T̂ I + T II = −

J2ρδD
D

[σa,σb]βαS aS b

=
J2ρδD
D
'σβα'S σ′σ. (16.104)

In this way we see that the virtual emission of a high energy electron and hole generates an antifer-
romagnetic correction to the original Kondo coupling constant

J(D′) = J(D) + 2J2ρ
δD
D

High frequency spin fluctuations thus antiscreen the antiferrromagnetic interaction. If we introduce
the coupling constant g = ρJ, we see that it satisfies

∂g
∂ lnD

= β(g) = −2g2 + O(g3).

This is an example of a negative β function: a signature of an interaction which is weak at high
frequencies, but which grows as the energy scale is reduced. The local moment coupled to the
conduction sea is said to be asymptotically free. The solution to this scaling equation is

g(D′) =
go

1 − 2go ln(D/D′)
(16.105)

and if we introduce the scale
TK = D exp

[
−
1
2go

]
(16.106)

we see that this can be written
2g(D′) =

1
ln(D′/TK)

This is an example of a running coupling constant- a coupling constant whose strength depends on
the scale at which it is measured. (See Fig. 16.14).

Were we to take this equation literally, we would say that g diverges at the scale D′ = TK . This
interpretation is too literal, because the above scaling equation has only been calculated to order g2,
nevertheless, this result does show us that the Kondo interaction can only be treated perturbatively
at energy scales large compared with the Kondo temperature. We also see that once we have written
the coupling constant in terms of the Kondo temperature, all reference to the original cut-off energy
scale vanishes from the expression. This cut-off independence of the problem is an indication that
the physics of the Kondo problem does not depend on the high energy details of the model: there is
only one relevant energy scale, the Kondo temperature.
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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= −J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.103)

where we have assumed that the energies εk and εk′ are negligible compared with D. Adding (Eq.
16.102) and (Eq. 16.103) gives

δHint
k′βσ′;kασ = T̂ I + T II = −

J2ρδD
D

[σa,σb]βαS aS b

=
J2ρδD
D
'σβα'S σ′σ. (16.104)

In this way we see that the virtual emission of a high energy electron and hole generates an antifer-
romagnetic correction to the original Kondo coupling constant

J(D′) = J(D) + 2J2ρ
δD
D

High frequency spin fluctuations thus antiscreen the antiferrromagnetic interaction. If we introduce
the coupling constant g = ρJ, we see that it satisfies

∂g
∂ lnD

= β(g) = −2g2 + O(g3).

This is an example of a negative β function: a signature of an interaction which is weak at high
frequencies, but which grows as the energy scale is reduced. The local moment coupled to the
conduction sea is said to be asymptotically free. The solution to this scaling equation is

g(D′) =
go

1 − 2go ln(D/D′)
(16.105)

and if we introduce the scale
TK = D exp

[
−
1
2go

]
(16.106)

we see that this can be written
2g(D′) =

1
ln(D′/TK)

This is an example of a running coupling constant- a coupling constant whose strength depends on
the scale at which it is measured. (See Fig. 16.14).

Were we to take this equation literally, we would say that g diverges at the scale D′ = TK . This
interpretation is too literal, because the above scaling equation has only been calculated to order g2,
nevertheless, this result does show us that the Kondo interaction can only be treated perturbatively
at energy scales large compared with the Kondo temperature. We also see that once we have written
the coupling constant in terms of the Kondo temperature, all reference to the original cut-off energy
scale vanishes from the expression. This cut-off independence of the problem is an indication that
the physics of the Kondo problem does not depend on the high energy details of the model: there is
only one relevant energy scale, the Kondo temperature.
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= −J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.103)

where we have assumed that the energies εk and εk′ are negligible compared with D. Adding (Eq.
16.102) and (Eq. 16.103) gives

δHint
k′βσ′;kασ = T̂ I + T II = −

J2ρδD
D

[σa,σb]βαS aS b

=
J2ρδD
D
'σβα'S σ′σ. (16.104)

In this way we see that the virtual emission of a high energy electron and hole generates an antifer-
romagnetic correction to the original Kondo coupling constant

J(D′) = J(D) + 2J2ρ
δD
D

High frequency spin fluctuations thus antiscreen the antiferrromagnetic interaction. If we introduce
the coupling constant g = ρJ, we see that it satisfies

∂g
∂ lnD

= β(g) = −2g2 + O(g3).

This is an example of a negative β function: a signature of an interaction which is weak at high
frequencies, but which grows as the energy scale is reduced. The local moment coupled to the
conduction sea is said to be asymptotically free. The solution to this scaling equation is

g(D′) =
go

1 − 2go ln(D/D′)
(16.105)

and if we introduce the scale
TK = D exp

[
−
1
2go

]
(16.106)

we see that this can be written
2g(D′) =

1
ln(D′/TK)

This is an example of a running coupling constant- a coupling constant whose strength depends on
the scale at which it is measured. (See Fig. 16.14).

Were we to take this equation literally, we would say that g diverges at the scale D′ = TK . This
interpretation is too literal, because the above scaling equation has only been calculated to order g2,
nevertheless, this result does show us that the Kondo interaction can only be treated perturbatively
at energy scales large compared with the Kondo temperature. We also see that once we have written
the coupling constant in terms of the Kondo temperature, all reference to the original cut-off energy
scale vanishes from the expression. This cut-off independence of the problem is an indication that
the physics of the Kondo problem does not depend on the high energy details of the model: there is
only one relevant energy scale, the Kondo temperature.
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ε) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉



H(I)aλH

(I)
λb

E − EHλ




where the energy of state |λ〉 lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
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for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

εk′′ ∈[D−δD,D]

[
1

E − εk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),
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the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

εk′′ ∈[−D,−D+δD]

[
1

E − (εk + εk′ − εk′′)

]
J2(σbσa)βα(S aS b)σ′σ

38

⇡ �J2⇥�D

D
(⇤b⇤a)⇥�(SaSb)⇤0⇤T̂ I

T̂ II

c©2010 Piers Coleman Chapter 16.

= −J2ρδD
[

1
E − D
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where we have assumed that the energies εk and εk′ are negligible compared with D. Adding (Eq.
16.102) and (Eq. 16.103) gives

δHint
k′βσ′;kασ = T̂ I + T II = −

J2ρδD
D

[σa,σb]βαS aS b

=
J2ρδD
D
'σβα'S σ′σ. (16.104)

In this way we see that the virtual emission of a high energy electron and hole generates an antifer-
romagnetic correction to the original Kondo coupling constant

J(D′) = J(D) + 2J2ρ
δD
D

High frequency spin fluctuations thus antiscreen the antiferrromagnetic interaction. If we introduce
the coupling constant g = ρJ, we see that it satisfies

∂g
∂ lnD

= β(g) = −2g2 + O(g3).

This is an example of a negative β function: a signature of an interaction which is weak at high
frequencies, but which grows as the energy scale is reduced. The local moment coupled to the
conduction sea is said to be asymptotically free. The solution to this scaling equation is

g(D′) =
go

1 − 2go ln(D/D′)
(16.105)

and if we introduce the scale
TK = D exp

[
−
1
2go

]
(16.106)

we see that this can be written
2g(D′) =

1
ln(D′/TK)

This is an example of a running coupling constant- a coupling constant whose strength depends on
the scale at which it is measured. (See Fig. 16.14).

Were we to take this equation literally, we would say that g diverges at the scale D′ = TK . This
interpretation is too literal, because the above scaling equation has only been calculated to order g2,
nevertheless, this result does show us that the Kondo interaction can only be treated perturbatively
at energy scales large compared with the Kondo temperature. We also see that once we have written
the coupling constant in terms of the Kondo temperature, all reference to the original cut-off energy
scale vanishes from the expression. This cut-off independence of the problem is an indication that
the physics of the Kondo problem does not depend on the high energy details of the model: there is
only one relevant energy scale, the Kondo temperature.
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Figure 16.14: Schematic illustration of renormalization group flow from a repulsive “weak cou-
pling” fixed point, via a crossover to an attractive “strong coupling” fixed point.

It is possible to extend the above leading order renormalization calculation to higher order in
g. To do this requires a more systematic method of calculating higher order scattering effects. One
tool that is particularly useful in this respect, is to use the Abrikosov pseudo-fermion representation
of the spin, writing

!S = f †α
(
!σ

2

)

αβ

fβ

n f = 1. (16.107)

This has the advantage that the spin operator, which does not satisfy Wick’s theorem, is now factor-
ized in terms of conventional fermions. Unfortunately, the second constraint is required to enforce
the condition that S 2 = 3/4. This constraint proves very awkward for the development of a Feynman
diagram approach. One way around this problem, is to use the Popov trick, whereby the f-electron
is associated with a complex chemical potential

µ = −iπ
T
2

The partition function of the Hamiltonian is written as an unconstrained trace over the conduction
and pseudofermion Fock spaces,

Z = Tr
[
e−β(H+iπ

T
2 (n f−1))

]
(16.108)

Now since the Hamiltonian conserves n f , we can divide this trace up into contributions from the d0,
d1 and d2 subspaces, as follows:

Z = eiπ/2Z( f 0) + Z( f 1) + e−iπ/2Z( f 2)
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