$$|\Psi_{P_1P_2}^{M}\rangle = W_{e^*}|\Psi_{o}\rangle \quad \Delta E = 2J_{M}$$

In the Honeycomb model, these excitations are degenerate
because
$$J_m = J_e = \frac{J_x^2 J_y^2}{16 J_z^3}$$
.

e: ∏ σ[×]_j = -1 +

$$m : \pi \sigma_j^2 = -1$$

"Abelian Anyons"

ABELIAN ANYONS : BRAIDING, SUPERSELECTION + FUSION.

The anyons of the Toric code are examples
of "Abelian" anyons. When we braid them,
the braiding processes commute. We can "move"
the e & m anyons by simply extending
the string acation operators, e.g
$$W_{e_1}^E = \sigma_{J}^2$$
. There = $\Pi \sigma_{J}^2$
 $W_{e_1}^E = \sigma_{J}^2$ $\Pi \sigma^2 = \Pi \sigma_{J}^2$
 $W_{e_1}^E = \sigma_{J}^2$ $\Pi \sigma_{J}^2 = U \sigma_{J}^2$

Similarly taking e's around e's produce +1, likewise with m's, so they are bosons to themselves. However the combination of an m& an e, which is called an ε behaves as a fermion!

SUPER-SELECTION

Class of states that can be transformed into one-another by local operators. e.g the current operator can fuse a positron + electron into a photon. $e^+ \times e^- = X$

For the bonc code

$$e \times e = m \times m = E \times E = 1$$
.
 $e \times m = E, e \times E = m, m \times E = e.$

IDENTIFICATION OF PARTICLES IN THE HONEYCOMB LATTICE.

In phase B, the gapless fermions prevent the Vortices from being moved advababically, so they no longer have well defined statistics.

But ! Broken hime reversal symmetry can induce
a gap in the Fermion spectrum!

$$V = -\sum_{j} \vec{h} \cdot \vec{\sigma}_{j} \qquad \left(\frac{1}{E_{o}-\mathcal{H}}\right)^{1} = (1-P) \frac{1}{E_{o}-\mathcal{H}} (1-P)$$
Heff = $P \int V + V \left(\frac{1}{E_{o}-\mathcal{H}}\right)^{\prime} V + V \left(\frac{1}{E_{o}-\mathcal{H}}\right)^{\prime} V + \cdots \int P$

$$\int_{0}^{U} \frac{Preserves}{T-rev} \qquad (Poor Man's R.G)$$

$$Heft \sim -\frac{h_{x}h_{y}h_{z}}{J^{2}} \sum_{j,k,\ell} \sigma_{j}^{x} \sigma_{k}^{y} \sigma_{\ell}^{z}$$

& symmetry equivalents.

Six fermion term

$$\sim -i b_{j}^{x} c_{j} b_{e}^{z} c_{e} b_{\kappa}^{y} c_{\kappa}$$

$$\sim +i c_{j} b_{j}^{x} b_{e}^{x} (b_{e}^{x} b_{e}^{z} b_{e}^{y} c_{e}) b_{e}^{y} b_{\kappa}^{y} c_{\kappa}$$

$$= i (D_{e} \hat{u}_{je} \hat{u}_{e\kappa}) c_{j} c_{\kappa} \sim -i c_{j} c_{\kappa}.$$

NEXT NEAREST NELOKBOR HOPPINC!

Heft :
$$\frac{i}{4} \leq A_{jk} C_j C_k$$

 $A = 23 (-) + 2K (-)$
 $K \sim h_x h_y h_z$
 T^2

Quartized Thermal Hall Effect

Recall that in the IQHE, the presence of edge states led to a quantized Hall conductance.

Now under rather general conditions $\frac{1}{T}K_{ab} = L \sigma_{ab}, \qquad L^2 \frac{\pi^2 k_e^2}{3 e^2},$ where K is the themal conductivity known. So for the IQHE, we expect

 $\frac{k_{xy}}{7} = \frac{\pi^2 k_g^2}{3e^2} \times \frac{e^2}{h} = \left(\frac{\pi k_g^2}{6\pi}\right)^2$

A Majorana edge state carries 1/2 the heat current of an electron edge state

KITAEV SPIN LIQUIDS

In 2009, George Jackeli & Giniyar Khalililin proposed that Iridium atoms inside Octohedra would develop kitaev-like Ising interactions with their neighbors. Suddenly, the kitaev honeycomb model was no longer a "boy": it might be realized in solid state quantum materials.

Proposed oystems : spin orbit compled transchon metals (e.g. Ru, Ir) in an Octobedral environment

$$Ir^{4+}$$
 $5d^{5}$
Ru $4d^{5}$

One hole.

Hunds compling LOLIERS the energy of virtual hops of two porallel spins, inducing an Ising compling perpendicular to the plane shared by the edge & the Ir atoms.

Octahedra con be laid davn in a plane to form a honeycomb structure

The three noighboring edge-shoring octubeda define three orthogonal planes, giving rise to the three directions for the Ising interactions. Interlayer couplings are weak,

but there are additional Heisenberg & tensor interactions.

$$H = \sum \left\{ -kS_i^r S_j^r + \Gamma\left(S_i^{\prime} S_j^{\beta} + S_i^{\beta} S_j^{\prime}\right) + 3\overline{S}_i . \overline{S}_j^{\prime} \right\}$$

$$\stackrel{(i,j)_r}{Hunds} \qquad d - d / d - p \qquad d - d$$

$$electron transfer \qquad hybridization (k > \Gamma >> 3).$$

Materials	Crystal structure (Space group)	T _{mag}	anisotro py	ρ _{eff} (μ _B)	<i>Ө</i> сw (К)	Magnetic ground state	Ref.
Na ₂ IrO ₃	2D (C2/m)	15 K	χc > χ _{ab}	1.81 (<i>ab</i>) 1.94 (<i>c</i>)	-176 (<i>θ</i> _{ab}) -40 (<i>θ</i> _c)	zigzag	40,57,66, 67
α-Li₂lrO₃	2D (C2/m)	15 K	_{χab} > χ _c	1.50 (<i>ab</i>) 1.58 (<i>c</i>)	+5 (θ_{ab}), -250 (θ_c)	Spiral	44,65,70
H ₃ Lilr ₂ O ₆	2D (<i>C</i> 2/ <i>m</i>)	-	χ _{ab} > χ _c	1.60	-105	Spin-liquid	46
Cu ₂ IrO ₃	2D (C2/c)	2.7 K	Not known	1.93(1)	-110	AF order or Spin-glass	42
Cu ₃ Lilr ₂ O ₆	2D (C2/c)	15 K	Not known	2.1(1)	-145	AF order	49
Ag ₃ Lilr ₂ O ₆	2D (<i>R</i> -3 <i>m</i> *)	~12 K	Not known	1.77		AF order	48
α-RuCl₃	2D ($C2/m$ or $P3_112$,or R-3); T and sample dependent	7 K and/or, 14 K See text	_{Xab} > χ _c	2.33 (<i>ab</i>), 2.71 (<i>c</i>)	+39.6(<i>θ</i> _{ab}), -216.4 (<i>θ</i> _c)	zigzag	51,64,68, 69, 131
β-Li₂lrO₃	3D (Fddd)	38 K	$\chi_b > \chi_c > \chi_a$	1.87 (<i>a</i>) 1.80 (<i>b</i>) 1.97 (<i>c</i>)	$\begin{array}{c} -90.2 \ (\theta_{a}) \\ +12.9 \ (\theta_{b}) \\ +21.6 \ (\theta_{c}) \end{array}$	Spiral	52,71,92
γ-Li ₂ IrO ₃	3D (<i>Cccm</i>)	39.5 K	χ _b > χ _c > χ _a	~1.6	+40	Spiral	53,72

Figure 7. **Signature of fractional excitations in** α -**RuCl₃. a**, Inelastic neutron scattering in single-crystal α -RuCl₃ measured at temperatures of T = 5 K (top) and 10 K (bottom)⁷⁵. The data is integrated over a small reciprocal space volume centered at the Γ point of the twodimensional lattice. The letters designate the contributions from the elastic line "E", spin-waves "S", and continuum scattering "C". b, Inelastic neutron scattering is measured at T = 2 K (top) in zero external magnetic field and (bottom) in a field of 8 T in the honeycomb plane, large enough to suppress the magnetic order⁹⁰. The color bar denotes the relative intensity. **c**, THz spectroscopy measurements in α -RuCl₃¹¹³ in the presence of a magnetic field applied in the honeycomb plane, with the THz field parallel to the applied field direction. All measurements were carried out at T = 2.4 K. The arrows indicate locations of excitations inferred from the data. **d**, Detail of Raman measurements in α -RuCl₃ at T = 5 K¹⁰⁷. The blue shaded area represents the magnetic continuum scattering. (Panel **a** reproduced with permission from Ref. 75, panel **b** reproduced with permission from Ref. 90, panel **c** reproduced with mission from Ref. 113, and panel **d** reproduced with permission from Ref. 107).