10. Chern Sons Theory

Sofar, we have looked at the microscopic wavefunction of the FQHE and its excitations. Fever, wed like to understand the long-wavelength properties: what is the electrodynamics, the long-wavelength acton; is there an order parameter, is there an analog of the Ginsburg Landau theory of superconductors?

It tuns out that to understand the quarks Hall effect, both the integer \& the fractional variety, requires an emergent electrodynamics, Chern Simons Theory. The key idea, is that we integrate out the electronic degrees of freedom, to obtain an effective action

$$
e^{i S_{\text {eft }}[A] / \hbar}=\int \delta[\text { fields }] e^{i S[\text { fields }, A] / \hbar}
$$

The conventorial Maxwell acton gives us Gauss' \& Ampères law

$$
\nabla \cdot E=\rho / \epsilon_{0}
$$

$$
\left(\nabla \times B-\frac{1}{c^{2}} \frac{\partial E}{\partial t}\right)=\mu_{0} \vec{j}
$$

Weill see that the new acton - the CHERN-Simons acton gives us the physios of flux attachment \& the quartic Hall effect

$$
\rho(x)=\frac{k}{2 \pi} B(x)
$$

$$
J_{x}=\frac{k}{2 \pi} \quad E_{y}
$$

flux attachment

Relativistic Electrodynamics

Before we jump into CS theory, let us remind ourselves about Maxuellian electromagnetism. Fundamental to the physics is the scalar \& vector potential, it terms of which

$$
E=-\frac{\partial \vec{A}}{\partial t}-\nabla \phi \quad \vec{B}=(\nabla \times \vec{A})
$$

In terms of these fields, the classic Maxwell acton is

$$
S_{M}=\int d t d^{2} x\left(\left[\frac{1}{2 \mu_{0}}\left(\left(\frac{E}{c}\right)^{2}-B^{2}\right)\right]+\vec{\jmath} \cdot A-\rho \phi\right)
$$

where I'm already preparing you for $2+1$ dimensions.

This is most succinctly formulated in a relativishi formulation, using the electromagnetic field tensor

$$
F_{\mu \nu}=\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)
$$

Now, it is very easy to get into a mess with minus signs \& conventions in relativistic E.M, and the formalism is much akin to the theory of gravity.

Ok, but a fen preliminaries. We denote $x^{m}=(k t, \vec{x})$ as space time co-ordinater, so that

$$
\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}} \equiv\left(\frac{\partial}{c \partial t}, \vec{\nabla}\right)
$$

and

$$
A^{\mu}=\left(\frac{V}{c}, \vec{A}\right), \quad A_{m}=\left(\frac{V}{c},-\vec{A}\right)
$$

where $A_{\mu}=g_{\mu v} A^{v}, g_{m v}=\operatorname{diag}(1,-1,-1)$. Also

$$
\begin{array}{rlrl}
J^{m} & =\rho(c, \vec{v}), \quad J_{r} & =\rho(c,-\vec{v}) \\
& =(c \rho, \vec{j}) & & =(c \rho,-\vec{j})
\end{array}
$$

You can check that in $2+1 D$

$$
F_{\mu v}=\left[\begin{array}{ccc}
0 & E_{l c}^{1} & E_{l c}^{2} \\
-E_{l}^{\prime} & 0 & -B \\
-E_{/ c}^{2} & B & 0 \\
-\vec{A}_{2} & -\vec{A}_{1}
\end{array}\right]=\left[\begin{array}{ccc}
F_{00} & F_{01} & F_{02} \\
F_{10} & F_{01} & F_{12} \\
F_{20} & F_{21} & F_{22}
\end{array}\right]
$$

eff $\quad F_{12}=\partial_{1}\left(A_{2}\right)-\partial_{2}\left(A_{1}\right)=-B_{2}=-B_{2}$

$$
F_{i 0}=\partial_{i} A_{0}-\partial_{0} A_{i}=\frac{\nabla_{i} V}{c}+\frac{\partial A_{i}}{\partial t}=-\frac{E_{i}}{c}
$$

$$
\begin{aligned}
& F^{\mu \nu}=g^{\mu \alpha} F_{\alpha \beta} g^{\beta \nu}=\left(\begin{array}{lll}
1 & & \\
& -1 & \\
& -1
\end{array}\right)\left(\begin{array}{ccc}
0 & \epsilon & E \\
-\epsilon & \ldots & -\beta \\
-\epsilon+B
\end{array}\right)\left(\begin{array}{cc}
1 & \\
\hline & \\
& -1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -E_{/} & -E_{y / c} \\
E_{x+c} & 0 & -B_{z} \\
E_{y / c} & B_{z} & 0
\end{array}\right)
\end{aligned}
$$

In terms of this notation

$$
\frac{1}{2 \mu_{0}}\left(E^{2}-B^{n}\right)=\frac{1}{4 \mu_{0}}\left(F_{\mu \nu} F^{\nu \mu}\right)
$$

and the fall achoo is $\left(-\partial_{\gamma} \delta A_{\mu}+\partial_{\mu} \delta A_{\nu}\right)$

$$
\begin{aligned}
& S=\int d^{3} x\left[\frac{1}{4 \mu_{0}}\left(F_{\mu \nu} F^{v \mu}\right)-J_{\mu} A^{\mu}\right] \\
& \left.\begin{array}{l}
J^{\mu}= \\
A^{\mu}=(\rho c, \vec{\jmath})
\end{array}\right\} J^{\mu} A_{\mu}=(\rho \mid c, \vec{A})
\end{aligned}
$$

When you take varianois wit respect to $^{\prime M} \rightarrow A^{n}+\delta A^{\mu}$, one obtains

$$
\delta S=\int d^{3} x\left(\frac{1}{M_{0}} \partial^{\nu} F_{v \mu}-J_{\mu}\right) \delta A^{\mu}
$$

which gives Maxwells equations (Ampère \& Gaurs)

$$
\partial_{\nu} F^{\nu \mu}=\mu_{0} J^{\mu}\left\{\begin{array}{l}
\text { Gauss } \\
\text { Ampère }
\end{array}\right.
$$

e. $\%$

$$
\begin{aligned}
& \partial_{i} F^{i 0}=\frac{\nabla \cdot E}{c}=\mu_{0} c \rho \Rightarrow \nabla \cdot E=\mu_{0} c^{2} \rho \\
&=\rho / \epsilon_{0} \\
& \partial_{i} F^{i j}=\mu_{0} J^{j} \Rightarrow(\nabla \times B)-\frac{1}{c^{2}} \frac{\partial E}{\partial t}=\mu_{0} \vec{J}
\end{aligned}
$$

We will often adopt $\mu_{0}=4 \pi, c=1$ in our work.

CHERN simons Theory: IQhe

$$
\begin{aligned}
S_{c S} & =\frac{k}{4 \pi} \int d^{3} x\left(\epsilon^{\mu \nu \rho} A_{\mu} \partial_{\nu} A_{\rho}\right) \quad\left(\text { FRADKiN } \frac{k}{\pi}=\theta\right) \\
& =\frac{k}{8 \pi} \int d^{3} x\left(\epsilon^{\mu v \rho} A_{\mu} F_{v \rho}\right) \\
& =\frac{k}{4 \pi} \int d^{3} x\left(A_{0} F_{12}+A_{1} F_{20}+A_{2} F_{D 1}\right) \\
& =\frac{k}{4 \pi} \int d^{3} x\left(\frac{\phi}{c} B-\left(A_{1} E_{2}-A_{2} E_{1}\right)\right) \\
& =\frac{k}{4 \pi} \int d^{3} x\left(\frac{\phi}{c} B_{z}-(A \times E)_{z}\right)
\end{aligned}
$$

Very strange! Breaks time reversal + Mirror symmetry.
Not obviously grange invariant because it involves a naked vector potential.

$$
\psi \rightarrow e^{i \omega} \psi
$$

Gauge invariance

$$
\begin{aligned}
& A_{\mu} \longrightarrow A_{\mu}+\partial_{\mu} \omega \\
& F_{\mu \nu} \longrightarrow F_{\mu \nu} \\
& S_{c s} \rightarrow S_{c s}+\frac{k}{4 \pi} \int d^{3} x\left(\epsilon^{\mu \nu \rho} \partial_{\mu} \omega \partial_{\nu} A_{\rho}\right) \\
& =S_{c s}+\frac{k}{4 \pi} \int d^{3} \times[\partial_{\mu}\left(\epsilon^{\mu v \rho} \omega \partial_{\nu} A_{\rho}\right)-\omega \underbrace{\epsilon^{N v \rho} \partial_{\mu} \partial_{\nu} A_{\rho}}_{=0}] \\
& \text { Total Derivative } \\
& \begin{array}{l}
\rightarrow \text { Vanishing suptece term } \\
=0
\end{array} \\
& =S_{c s}
\end{aligned}
$$

"Maxwell" equations

$$
A_{\mu} \rightarrow A_{\mu}+\delta A_{M}
$$

$$
\begin{aligned}
& \delta S=\int d^{3} x\left[\frac{k}{4 \pi} \epsilon^{\mu \nu \rho}\left(\delta A_{\mu} \delta_{\nu} A_{\rho}+A_{\mu} \partial_{\nu} \delta A_{\rho}\right)-J^{\mu} \delta A_{\mu}\right] \\
&-\epsilon^{\rho \nu \mu} \partial_{\nu} A_{\rho} \delta A_{\mu} \\
&=\int d^{3} x\left[\frac{k}{4 \pi} \epsilon^{\mu \nu \rho}\left(\delta A_{\mu} \partial A_{\rho}-\partial_{\nu} A_{\mu} \delta A_{\rho}\right)-J^{\mu} \delta A_{\mu}\right] \\
&=\int d^{3} x\left[\frac{k}{2 \pi} \epsilon^{\mu \nu \rho} \partial_{\nu} A_{\rho}-J^{\mu}\right] \delta A_{\mu} \\
& \Rightarrow J^{\mu}=\frac{k}{2 \pi} \epsilon^{\mu \nu \rho} \partial_{\nu} A_{\rho}
\end{aligned}
$$

Write in coordinates $(c=1)$

$$
\begin{aligned}
& \rho(x)=J_{(x)}^{0}=\frac{k}{2 \pi}\left(\partial_{1} A_{2}-\partial_{2} A_{1}\right)=-\frac{k}{2 \pi} B_{z} \\
& \int \rho d^{2} x=e N_{p} \\
& J^{i}(x)=\frac{k}{2 \pi} \epsilon^{i j}\left(\partial_{j} A_{0}-\partial_{0} A_{j}\right)=-\frac{k}{2 \pi} \epsilon^{i j} E_{j}
\end{aligned}
$$

1.e $\quad N_{p}=\frac{k}{2 \pi} \frac{\Phi}{e}=\frac{k \Phi_{0}}{2 \pi e}\left(\frac{\Phi_{\Phi}}{\Phi_{0}}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{N_{P}}{N_{\Phi}}=\frac{k \Phi_{0}}{2 \pi e}=\nu \\
& \Rightarrow \nu=\frac{k \hbar}{e^{2}} \Rightarrow k=\frac{v e^{2}}{\hbar}
\end{aligned}
$$

FIXED DENS TH: FIXED \# particles/ flux tube

$$
S_{c s}=\frac{v e^{2}}{2 h} \int d^{3} x e^{\mu v \rho} A_{\mu} \partial_{v} A_{\rho}
$$

$$
\sigma_{x y}=\frac{k}{2 \pi}=\frac{\nu e^{2}}{h}
$$

IQHE.

It turns out, that it you quantize the C.S theory on a sphere (containing one monopole), then one is only allowed $v=\mathbb{Z}$ integers. Explains IQHE.

$$
S_{2} \rightarrow 1 \mathrm{P} .15=1+\text { Periodicity in time. }
$$

CHER simmons and flux attachment

We found before, that if you attach a flux of strength Φ to a boson, it acquires a statistical angle

$$
\begin{aligned}
& \theta=\Pi\left(\frac{q}{e}\right)\left(\frac{\Phi}{\Phi_{0}}\right) \quad \sim \pi \times \# \text { flux tubes. } \\
& \eta \sim e^{i \theta}=-1 \\
& \phi / \Phi_{0}=\text { odd integer }(m)
\end{aligned}
$$

So it $q=e$, altroching $m=\Phi / \Phi_{0}$ odd flux quanta to
a boson produces a Fermion.

$$
\overbrace{\prod_{0}^{m \in \mathbb{Z}}}^{\mathrm{odd}} \equiv \theta_{F} \text {. }
$$

But the C.S action leads to $\quad N_{\phi} / N=\frac{2 \pi e}{k \Phi_{0}}=\frac{1}{k}$
Since in units where $e=\hbar=1 \quad \Phi_{0}=h / e=2 \pi \frac{\hbar}{e}=2 \pi$.

Thus if $k=1 / m$, the Chern Simone Theory attaches m flux quanta. In this val we con Transmute bosons into Fermions.

FQhe: Chern-Simons Theory.

$$
\begin{aligned}
& D_{\mu}=\partial_{\mu}+i \frac{e}{\hbar} A_{\mu}+i a_{\mu} \\
& i D_{0}=\left(i \partial_{0}-\frac{e}{\hbar} A_{0}-a_{0}\right)
\end{aligned}
$$

Key idea (Zhang, Hannson, Kivelton, 1989 ; building on eadiér worle of Read \& of Giruin + Macdonald): think of funes in the FQre as an EMERCENT GAucE FIECD. a^{μ}. Treat the problem os bosons with m flux thaber altached by a C.S theory with $k=\frac{1}{m}$.

$$
\text { field } \left.a_{a_{n}} \partial_{v} a_{n}\right\}
$$

$$
\begin{aligned}
& S_{\text {colomb }}=-\frac{1}{2} \int d^{3} x\left(|\psi(x)|^{2}-\rho_{0}\right) V\left(x-x^{1}\right)\left(\mid \psi\left(\left.x^{\prime}\right|^{2}-\rho_{0}\right)\right. \\
& S_{\text {Local }}=-\int d^{3} x \lambda \mid \psi\left(\left.x\right|^{4} .\right.
\end{aligned}
$$

