
Solutions to Exercises 1. Physics 603. The SSH Model (Oct 7, 2020 )

1. In the SSH model, the dispersion is given by

Ek = ±
√

(2t cos k)2 + (2αu0 sin k)2

= ±2t
√

1− (1− z2) sin2 k (1)

where z = (2αu0/t). Show that the density of states per spin for a long chain with N sites

is given by

ρ(E) =
1

N

∑
λ

δ(E − Eλ) =
1

π

dk

dE
=

1

π

|E|√
((2t)2 − E2)(E2 −∆2

g)
(2)

where ∆g = 4αu0.

Solution: The density of states is given by

ρ(E) =
∑
±

∫ π

0

dk

2π
δ(E − E±k )

=
∑
±

∫ 2t

−2t

dE

2π

∣∣∣∣ dkdE±k
∣∣∣∣ δ(E − E±k ) =

∑
±

1

2π

∣∣∣∣ dkdE±k
∣∣∣∣ , (3)

where E±k = ±2t
√

1− (1− z2) sin2 k. Now the derivative

dE±k
dk

= ∓2t(1− z2) sin k cos k√
1− (1− z2) sin2 k

. (4)

However, from the dispersion, we can identify

sin2(k) =
(4t2 − E2)

(2t)2(1− z2)
, cos2(k) =

(
E2 −∆2

g

)
(2t)2(1− z2)

, (5)

so that ∣∣∣∣ dkdE±k
∣∣∣∣ =

|E|√
(2t)2 − E2

√
E2 −∆2

g

. (6)

Adding the contribution of both branches of the energy,

ρ(E) =
1

π

|E|√
((2t)2 − E2)(E2 −∆2

g)
. (7)

It is actually useful to write the density of states as Re[ρ(E − iδ)], where −iδ is

a small imaginary part, and

ρ(z) =

√
z2

((2t)2 − z2)(z2 −∆2
g)
, (8)

as this analytic function has branch-cuts outside the conduction and valence

bands, giving zero in these regions.

1



2. Set up in Mathematica, Matlab or your favorite notebook code an N (where N is even)

dimensional matrix for the one-particle Hamiltonian of the SSH model,

H =
∑
j

[
−tj+1,j(c

†
j+1σcjσ + H.c) +

K

2
(uj+1 − ui)2

]
(9)

in which the hopping matrix element is tj+1,j = −t− α(uj+1 − uj), and in the ground-state

uj = −u0(−1)j. Your one-particle Hamiltonian will look something like this

H = −



t+ δ . . . t− δ

t+ δ t− δ

t− δ
...

. . .

t− δ

t− δ t+ δ

t− δ t+ δ


where δ = 2αu0. Note the corner elements are present for periodic boundary conditions.

Solution:

Important to check for small size that you have the matrix you are seeking.

FIG. 1: Mathematica Code for setting up matrix

(a) Confirm numerically that you obtain a gap 2∆g in the one-particle spectrum, where

∆g = 4αu. What happens to your spectrum when you eliminate the corner matrix

elements? Why?
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Solution: If δ > 0 is positive, the ground-state and forms edge states at each end of

the strip. This is most easily seen by setting δ = t, whereupon the first and last sites

in the strip are decoupled from the bulk. The ground-state is actually topological.

FIG. 2: Mathematica Code for evaluating the density of states for periodic (H1) and open (H2)

boundary conditions, showing the formation of zero energy states in the latter case.

(b) Calculate the density of states numerically, and compare your answer with that ob-

tained in (1). You can do this succinctly in Mathematica by broadening each energy

level into a Lorentzian and calculating

ρ(E) =
1

πN
Im
∑
λ

1

E − Eλ − iε

where Iε is a small imaginary part.

Solution: Here is a comparison of the numerical and analytic density of states.
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FIG. 3: Comparison of density of states for periodic (green), and open (blue) boundary conditions

for Ns = 200 sites, with analytical formula (8).

(c) By summing over the energies of the filled states, and adding in the phonon energy

2NKu20, confirm that the dependence of the energy on the displacement u0 is a double-

well potential. How well does your result compare with the exact result for the ground-

state energy?
E0[u0]

N
= −4t

π
E[1− (2αu0/t)

2] + 2Ku20

where

E[x] =

∫ π/2

0

√
1− x2 sin k2dk

is the complete elliptic integral of the second kind. Does your result improve as you

increase the number of sites N?
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Solution:

FIG. 4: Comparison of the numerical (red) and analytic (blue) total energy for Ns = 6 and

Ns = 200 sites, showing convergence to the analytic result as Ns increases.

(d) Now modify your to include a soliton by using 2N + 1 sites. You can put a soliton at
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the N + 1 st site by taking

uj = −u0(−1)j−(N+1) tanh

(
j − (N + 1)

l

)
Choose the value of u0 you obtained at the minimum of your calculation in (c). Re-

compute the one-particle electron spectrum and confirm that it now contains a zero

energy mode.

Solution:

FIG. 5: Density of states for a single soliton in a ring with 1601 sites.

(e) Now recompute the energy for a variety of soliton sizes l and calculate the optimal

soliton size.
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Solution:

Here it was important to make sure that the gap size was small enough, so that the

coherence length ξ = vF/∆g of the order was larger than the lattice spacing. This

means using a sufficiently weak phonon coupling α and K. I adjusted things to get

a coherence length of about ξ = 9, and discovered that the optimal soliton came out

with the same size.

FIG. 6: Energy as a function of Soliton size l, for a ring of 1601 sites, showing that an optimal

soliton has l ∼ ξ = vF /∆g, the coherence length.
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