GRADUATE QUANTUM MECHANICS: 501 Fall 2001

Assignment 6. (Due Mon 20th)

Read Sakurai p. 152-168

1. Sakurai, ch 2, problem 36, p 150. An electron moves in the presence of a uniform magnetic field in the z-direction. $(\mathbf{B}=B \hat{z})$.
(a) Evaluate

$$
\begin{equation*}
\left[\Pi_{x}, \Pi_{y}\right] \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Pi_{x}=p_{x}-e A_{x}, \quad \Pi_{x}=p_{x}-e A_{x} \tag{2}
\end{equation*}
$$

(b) By comparing the Hamiltonian and the commutation relations obtained in (a) with those of the Harmonic Oscillator, show how we can immediately write the energy eigenvalues as

$$
\begin{equation*}
E_{k, n}=\frac{p_{z}^{2}}{2 m}+\frac{|e B|}{m}\left(n+\frac{1}{2}\right) \tag{3}
\end{equation*}
$$

where p_{z} is the continuous eigenvalue of the \hat{p}_{z} operator and $n \geq 0$ is a non-negative integer.
2. (Sakurai, ch 2, problem 37, p 150.) A neutron beam is split into two components. One beam passes through a region of magnetic field pointing in the z direction, which causes the neutron spins to precess. The Hamiltonian for the neutron spin in a magnetic field is

$$
\begin{equation*}
H=-g_{n} \frac{e B_{z}}{m} S_{z} \tag{4}
\end{equation*}
$$

where $g_{n}=-1.91$ is the neutron magnetic moment measured in units of $e \hbar / 2 m_{n}$. If the width of the region containing the field is l, prove that the difference in the magnetic fields that produce two successive maxima in the counting rates is given by

$$
\begin{equation*}
\Delta B=\frac{4 \pi h}{\left|e g_{n}\right| \lambda l} \tag{5}
\end{equation*}
$$

where λ is the wavelength of the neutron.

