GRADUATE QUANTUM MECHANICS: 501 Fall 2001

Solution to Assignment 5.

1. (a) The time-independent Schrödinger equation for this problem is

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{\partial}{\partial x^{2}}+\frac{\partial}{\partial y^{2}}+\right) \psi=E \psi
$$

by separating the variables $\psi(x, y)=X(x) Y(y)$, we obtain

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}\right)=E
$$

But since $\frac{1}{X} \frac{d^{2} X}{d x^{2}}$ is independent of y and $\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}$ is independent of x , both of these quantities must be constants, which we denote by

$$
-\frac{1}{X} \frac{d^{2} X}{d x^{2}}=k_{x}^{2}, \quad-\frac{1}{Y} \frac{d^{2} Y}{d x^{2}}=k_{y}^{2}
$$

so that $E=-\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}\right)$ is the total energy and

$$
\begin{equation*}
\frac{d^{2} X}{d x^{2}}+k_{x}^{2} X=0, \quad \frac{d^{2} Y}{d x^{2}}+k_{y}^{2} Y=0 \tag{1}
\end{equation*}
$$

so that

$$
\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}\right)=E
$$

is the total energy.
(b) The general solution of 1 is given by $X(x)=A e^{i k_{x} x}+B e^{-i k_{x} x}$, but the boundary conditions $X(0)=$ $X(L)=0$ imply that

$$
A+B=0, \quad A e^{i k_{x} L}+B e^{-i k_{x} L}=0
$$

so that $B=-A$ and then the second condition becomes

$$
\sin k_{x} L=0
$$

so that $k_{x}=\frac{\pi m}{L}$ and thus $X(x)=X_{m}(x) \equiv \sqrt{\frac{2}{L}} \sin \frac{\pi m x}{L}$ is the normalized form for X. Similar reasoning holds for $Y(y)=Y_{n}(y) \equiv \sqrt{\frac{2}{L}} \sin \frac{\pi n y}{L}$. so that the wavefunctions for the quantum coral can be written

$$
\begin{align*}
\psi_{m n}(x, y) & =\left(\frac{2}{L}\right) \sin \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi y}{L}\right) \\
E_{n m} & =\frac{\hbar^{2} \pi^{2}}{2 m^{2} L^{2}}\left(m^{2}+n^{2}\right), \quad(m, n \geq 1) \tag{2}
\end{align*}
$$

(c) Suppose we ignore spin, so that each electron goes into a different state. The three lowest states are then ψ_{11}, ψ_{12} and ψ_{21}.

The corresponding charge density is then

$$
\begin{align*}
\rho(x, y) & =e\left(\left|\psi_{11}(x, y)\right|^{2}+\left|\psi_{21}(x, y)\right|^{2}+\left|\psi_{12}(x, y)\right|^{2}\right) \\
& =\frac{4 e}{L^{2}}\left(\sin ^{2} \frac{\pi x}{L} \sin ^{2} \frac{\pi y}{L}+\sin ^{2} \frac{2 \pi x}{L} \sin ^{2} \frac{\pi y}{L}+\sin ^{2} \frac{\pi x}{L} \sin ^{2} \frac{2 \pi y}{L}\right) \\
& =\frac{4 e}{L^{2}} \sin ^{2} \frac{\pi x}{L} \sin ^{2} \frac{\pi y}{L}\left[1+4\left(\cos ^{2} \frac{\pi x}{L}+\cos ^{2} \frac{\pi y}{L}\right)\right] \tag{3}
\end{align*}
$$

The density of charge looks something like:

Figure 1: Density $\rho(x, y)$ for three electrons in a quantum coral of unit side length. Spin is ignored in this example.

Had you included electron spin, then you would have two electrons in the ψ_{11} state, and one in the ψ_{12} or ψ_{21} state, giving rise to a charge density of the form

$$
\rho(x, y)=\frac{8 e}{L^{2}} \sin ^{2} \frac{\pi x}{L} \sin ^{2} \frac{\pi y}{L}\left[1+2 \cos ^{2} \frac{\pi x}{L}\right]
$$

or

$$
\rho(x, y)=\frac{8 e}{L^{2}} \sin ^{2} \frac{\pi x}{L} \sin ^{2} \frac{\pi y}{L}\left[1+2 \cos ^{2} \frac{\pi y}{L}\right]
$$

corresponding to the asymmetric charge distributions:

Figure 2: Density $\rho(x, y)$ for three electrons in a quantum coral of unit side length, taking spin into account.
2. (a) For a single delta function potential $V(x)=-V_{o} \delta(x)$ the Schrödinger equation is

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}-V_{o} \delta(x)\right] \psi(x)=E \psi(x)
$$

which implies that

$$
\psi(x)= \begin{cases}A_{L} e^{-\kappa x}+B_{L} e^{\kappa x} & (x<0) \tag{4}\\ A_{R} e^{-\kappa x}+B_{R} e^{\kappa x} & (x>0)\end{cases}
$$

where $E=-\frac{\hbar^{2} \kappa^{2}}{2 m}$, subject to the boundary conditions $\psi\left(0^{+}\right)=\psi\left(0^{-}\right), \psi^{\prime}\left(0^{+}\right)+\kappa_{0} \psi\left(0^{+}\right)=\psi^{\prime}\left(0^{-}\right)-$ $\kappa_{0} \psi\left(0^{-}\right)$, or

$$
\left(\begin{array}{cc}
1 & 1 \\
-\left(\kappa+\kappa_{0}\right) & \left(\kappa-\kappa_{0}\right)
\end{array}\right)\binom{A_{L}}{B_{L}}\left(\begin{array}{cc}
1 & 1 \\
-\left(\kappa-\kappa_{0}\right) & \left(\kappa+\kappa_{0}\right)
\end{array}\right)\binom{A_{R}}{B_{R}}
$$

Inverting this equation, we have

$$
\binom{A_{R}}{B_{R}}=\left(\begin{array}{cc}
1+\lambda & \lambda \tag{5}\\
-\lambda & 1-\lambda
\end{array}\right)\binom{A_{L}}{B_{L}}, \quad \lambda=\frac{\kappa_{o}}{\kappa}, \quad \kappa_{o}=\frac{m V_{o}}{\hbar^{2}}
$$

(b) We now consider a 1D "wire" with a whole line of such scattering potentials,

$$
\begin{equation*}
V(x)=-V_{0} \sum_{n=1, N} \delta(x-n a) \tag{6}
\end{equation*}
$$

There was a miss-print in the problem sheet. A more appropriate form for the wave-function in each segment is

$$
\begin{equation*}
\psi(x)=A_{n} e^{-\kappa(x-n a)}+B_{n} e^{\kappa(x-(n+1) a)}, \quad(x \in[n a,(n+1) a]) \tag{7}
\end{equation*}
$$

By examining the amplitudes of the wavefunction just before, and just after the $n+1$ st potential spike, we can read off

$$
A_{R}=A_{n+1}, \quad B_{R}=B_{n+1} e^{-\kappa a}, \quad A_{L}=A_{n} e^{-\kappa a}, B_{L}=B_{n}
$$

so that

$$
\binom{A_{n+1}}{B_{n+1} e^{-\kappa a}}=\left(\begin{array}{cc}
(1+\lambda) & \lambda \\
-\lambda & (1-\lambda)
\end{array}\right)\binom{A_{n} e^{-\kappa a}}{B_{n}}
$$

which implies that the wavefunction along successive segments of the "wire" is related by a "transfer matrix" according to

$$
\binom{A_{n+1}}{B_{n+1}}=T\binom{A_{n}}{B_{n}}, \quad T=\left(\begin{array}{cc}
(1+\lambda) e^{-\kappa a} & \lambda \tag{8}\\
-\lambda & (1-\lambda) e^{\kappa a}
\end{array}\right)
$$

(c) Clearly, if we introduce $k \rightarrow k+2 \pi$ into the Bloch wave solution, the phase factor $e^{i k}=e^{i(k+2 \pi)}$ is unchanged, thus k is only defined up to multiples of 2π.
(d) Comparing the Bloch wave solution with the results of section (c), we obtain the eigenvalue equation:

$$
\left(\begin{array}{cc}
(1+\lambda) e^{-\kappa a} & \lambda \tag{9}\\
-\lambda & (1-\lambda) e^{\kappa a}
\end{array}\right)\binom{A_{o}}{B_{0}}=e^{i k}\binom{A_{o}}{B_{0}}
$$

which leads to the characteristic equation

$$
\left|\begin{array}{cc}
(1+\lambda) e^{-\kappa a}-e^{i k} & \lambda \\
-\lambda & (1-\lambda) e^{\kappa a}-e^{i k}
\end{array}\right|=0
$$

or

$$
\left((1+\lambda) e^{-\kappa a}-e^{i k}\right)\left((1-\lambda) e^{\kappa a}-e^{i k}\right)+\lambda^{2}=0
$$

or

$$
1-2(\cosh \kappa a-\lambda \sinh \kappa a) e^{i k}+e^{2 i k}=0
$$

and by completing the square:

$$
e^{i k}=(\cosh \kappa a-\lambda \sinh \kappa a) \pm \sqrt{(\cosh \kappa a-\lambda \sinh \kappa a)^{2}-1}
$$

Recognizing that the argument inside the square root must be purely imaginary, we obtain

$$
e^{i k}=(\cosh \kappa a-\lambda \sinh \kappa a) \pm i \sqrt{1-(\cosh \kappa a-\lambda \sinh \kappa a)^{2}}
$$

so that

$$
\begin{aligned}
\cos (k) & =(\cosh \kappa a-\lambda \sinh \kappa a) \\
\tan (k) & =\frac{\sqrt{1-(\cosh \kappa a-\lambda \sinh \kappa a)^{2}}}{\cosh \kappa a-\lambda \sinh \kappa a}
\end{aligned}
$$

(e) To get an idea of the solutions, it is helpful to consider the case when $\kappa_{o} a$ is large, corresponding to a small overlap between neighboring atoms. In this case, you can convince yourself that $\kappa=\kappa_{0}+\delta$ where δ is a small quantity. Substituting this into the expression for $\cos k$ obtained above, we derive

$$
\cos k=e^{-\kappa_{0} a}+\frac{\delta}{2} e^{\kappa_{0} a}
$$

so that we can solve for δ, which gives $\delta=2 \cos k e^{-\kappa_{0} a}$. The energy is then given by

$$
\begin{equation*}
E(k)=-\frac{\hbar^{2} \kappa_{0}^{2}}{2 m}(1+2 \delta)=E_{0}-2 t \cos k \tag{10}
\end{equation*}
$$

where

$$
t=-\frac{\hbar^{2} \kappa_{0}^{2}}{m} e^{-\kappa_{0} a}, \quad E_{0}=-\frac{\hbar^{2} \kappa_{0}^{2}}{2 m}
$$

This defines an energy band of extended Bloch wave solutions. The lowest energy state corresponds to the uniform wavefunction

Figure 3:
whereas the highest energy state corresponds to the staggered solution

