
GRADUATE QUANTUM MECHANICS: 501 Fall 2001

Solution to Assignment 5.

1. (a) The time-independent Schrödinger equation for this problem is

− h̄2

2m

(
∂

∂x2
+

∂

∂y2
+

)
ψ = Eψ.

by separating the variables ψ(x, y) = X(x)Y (y) , we obtain

− h̄2

2m

(
1
X

d2X

dx2
+

1
Y

d2Y

dy2

)
= E

But since 1
X

d2X
dx2 is independent of y and 1

Y
d2Y
dy2 is independent of x, both of these quantities must be

constants, which we denote by

− 1
X

d2X

dx2
= k2

x, − 1
Y

d2Y

dx2
= k2

y

so that E = − h̄2

2m (k2
x + k2

y) is the total energy and

d2X

dx2
+ k2

xX = 0,
d2Y

dx2
+ k2

yY = 0, (1)

so that
h̄2

2m
(k2

x + k2
y) = E

is the total energy.

(b) The general solution of 1 is given by X(x) = Aeikxx + Be−ikxx, but the boundary conditions X(0) =
X(L) = 0 imply that

A+B = 0, AeikxL +Be−ikxL = 0,

so that B = −A and then the second condition becomes

sin kxL = 0,

so that kx = πm
L and thus X(x) = Xm(x) ≡

√
2
L sin πmx

L is the normalized form for X . Similar reasoning

holds for Y (y) = Yn(y) ≡
√

2
L sin πny

L . so that the wavefunctions for the quantum coral can be written

ψmn(x, y) =
(

2
L

)
sin

(mπx
L

)
sin

(nπy
L

)
,

Enm =
h̄2π2

2m2L2
(m2 + n2), (m,n ≥ 1). (2)

(c) Suppose we ignore spin, so that each electron goes into a different state. The three lowest states are then
ψ11, ψ12 and ψ21.
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The corresponding charge density is then

ρ(x, y) = e(|ψ11(x, y)|2 + |ψ21(x, y)|2 + |ψ12(x, y)|2)
=

4e
L2

(
sin2 πx

L
sin2 πy

L
+ sin2 2πx

L
sin2 πy

L
+ sin2 πx

L
sin2 2πy

L

)

=
4e
L2

sin2 πx

L
sin2 πy

L

[
1 + 4(cos2

πx

L
+ cos2

πy

L
)
]

(3)

The density of charge looks something like:
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Figure 1: Density ρ(x, y) for three electrons in a quantum coral of unit side length. Spin is ignored in this example.

Had you included electron spin, then you would have two electrons in the ψ11 state, and one in the ψ12

or ψ21 state, giving rise to a charge density of the form

ρ(x, y) =
8e
L2

sin2 πx

L
sin2 πy

L

[
1 + 2 cos2

πx

L

]

or
ρ(x, y) =

8e
L2

sin2 πx

L
sin2 πy

L

[
1 + 2 cos2

πy

L

]

corresponding to the asymmetric charge distributions:
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Figure 2: Density ρ(x, y) for three electrons in a quantum coral of unit side length, taking spin into account.
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2. (a) For a single delta function potential V (x) = −Voδ(x) the Schrödinger equation is
[
− h̄2

2m
d2

dx2
− Voδ(x)

]
ψ(x) = Eψ(x)

which implies that

ψ(x) =
{

ALe
−κx +BLe

κx (x < 0)
ARe

−κx +BRe
κx (x > 0) (4)

where E = − h̄2κ2

2m , subject to the boundary conditions ψ(0+) = ψ(0−), ψ′(0+) + κ0ψ(0+) = ψ′(0−) −
κ0ψ(0−), or (

1 1
−(κ+ κ0) (κ− κ0)

) (
AL

BL

) (
1 1

−(κ− κ0) (κ+ κ0)

) (
AR

BR

)

Inverting this equation, we have
(
AR

BR

)
=

(
1 + λ λ
−λ 1− λ

)(
AL

BL

)
, λ =

κo

κ
, κo =

mVo

h̄2 . (5)

(b) We now consider a 1D “wire”with a whole line of such scattering potentials,

V (x) = −V0

∑
n=1,N

δ(x− na) (6)

There was a miss-print in the problem sheet. A more appropriate form for the wave-function in each
segment is

ψ(x) = Ane
−κ(x−na) +Bne

κ(x−(n+1)a), (x ∈ [na, (n+ 1)a]). (7)

By examining the amplitudes of the wavefunction just before, and just after the n+ 1st potential spike,
we can read off

AR = An+1, BR = Bn+1e
−κa, AL = Ane

−κa, BL = Bn

so that (
An+1

Bn+1e
−κa

)
=

(
(1 + λ) λ
−λ (1− λ)

) (
Ane

−κa

Bn

)
,

which implies that the wavefunction along successive segments of the ”wire” is related by a “transfer
matrix” according to

(
An+1

Bn+1

)
= T

(
An

Bn

)
, T =

(
(1 + λ)e−κa λ

−λ (1− λ)eκa

)
. (8)

(c) Clearly, if we introduce k → k + 2π into the Bloch wave solution, the phase factor eik = ei(k+2π) is
unchanged, thus k is only defined up to multiples of 2π.

(d) Comparing the Bloch wave solution with the results of section (c), we obtain the eigenvalue equation:
(

(1 + λ)e−κa λ
−λ (1 − λ)eκa

) (
Ao

B0

)
= eik

(
Ao

B0

)
. (9)

which leads to the characteristic equation
∣∣∣∣ (1 + λ)e−κa − eik λ

−λ (1 − λ)eκa − eik

∣∣∣∣ = 0
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or

((1 + λ)e−κa − eik)((1 − λ)eκa − eik) + λ2 = 0

or
1− 2(coshκa− λ sinhκa)eik + e2ik = 0

and by completing the square:

eik = (coshκa− λ sinh κa)±
√

(coshκa− λ sinhκa)2 − 1

Recognizing that the argument inside the square root must be purely imaginary, we obtain

eik = (coshκa− λ sinhκa)± i
√

1− (coshκa− λ sinhκa)2

so that

cos(k) = (coshκa− λ sinhκa),

tan(k) =

√
1− (coshκa− λ sinhκa)2

coshκa− λ sinhκa
.

(e) To get an idea of the solutions, it is helpful to consider the case when κoa is large, corresponding to a
small overlap between neighboring atoms. In this case, you can convince yourself that κ = κ0 + δ where
δ is a small quantity. Substituting this into the expression for cos k obtained above, we derive

cos k = e−κ0a +
δ

2
eκ0a

so that we can solve for δ , which gives δ = 2 coske−κ0a. The energy is then given by

E(k) = − h̄
2κ2

0

2m
(1 + 2δ) = E0 − 2t cosk (10)

where

t = − h̄
2κ2

0

m
e−κ0a, E0 = − h̄

2κ2
0

2m
.

This defines an energy band of extended Bloch wave solutions. The lowest energy state corresponds to
the uniform wavefunction

k=0 Uniform solution.

πk=      Staggered Solution.

Figure 3:

whereas the highest energy state corresponds to the staggered solution
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