GRADUATE QUANTUM MECHANICS: 501 Fall 2001

Solution to Assignment 4.

1. (a) For a free particle, $H=\frac{p^{2}}{2 m}$. The Heisenberg equations of motion are

$$
\begin{align*}
& \frac{d x}{d t}=\frac{1}{i \hbar}\left[x, \frac{p^{2}}{2 m}\right]=\frac{p}{m} \\
& \frac{d p}{d t}=\frac{1}{i \hbar}\left[p, \frac{p^{2}}{2 m}\right]=0 \tag{1}
\end{align*}
$$

From which we deduce that

$$
\begin{equation*}
p(t)=p, \quad x(t)=x+\frac{p}{m} t \tag{2}
\end{equation*}
$$

where $p \equiv p(0), x \equiv x(0)$. It thus follows that

$$
\begin{equation*}
[x(t), x(0)]=\left[x+\frac{p}{m} t, x\right]=\frac{-i \hbar t}{m} \tag{3}
\end{equation*}
$$

(b) From the above result,

$$
\begin{align*}
\left\langle x^{2}(t)\right\rangle & =\left\langle\left(x+\frac{p}{m} t\right)^{2}\right\rangle \\
& =\left\langle x^{2}\right\rangle+\left\langle p^{2}\right\rangle \frac{t^{2}}{m^{2}}+\frac{t}{m}\langle x p+p x\rangle \tag{4}
\end{align*}
$$

Now

$$
\begin{equation*}
\langle x(t)\rangle^{2}=\left(\langle x\rangle+\frac{t}{m}\langle p\rangle\right)^{2} \tag{5}
\end{equation*}
$$

so subtracting these two results, we obtain

$$
\begin{equation*}
\left\langle x(t)^{2}\right\rangle-\langle x(t)\rangle^{2}=\left\langle\Delta x^{2}(t)\right\rangle=\left\langle\Delta x^{2}\right\rangle+\left\langle p^{2}\right\rangle \frac{t^{2}}{m^{2}}+\frac{t}{m}\langle\{\Delta x, \Delta p\}\rangle \tag{6}
\end{equation*}
$$

Now the uncertainty relation tells us that

$$
\begin{align*}
\left\langle\Delta x^{2}\right\rangle\left\langle\Delta p^{2}\right\rangle & \geq\left[\frac{-i}{2}\langle[x, p]\rangle\right]^{2}+\left[\frac{1}{2}\langle\{\Delta x, \Delta p\}\rangle\right]^{2} \\
& =\frac{\hbar^{2}}{4}+\left[\frac{1}{2}\langle\{\Delta x, \Delta p\}\rangle\right]^{2} \tag{7}
\end{align*}
$$

In a minimal uncertainty wavepacket, at $t=0 \Delta x \Delta p=\hbar / 2$, so the second term is zero, and we may write

$$
\begin{equation*}
\Delta x(t)^{2}=\Delta x_{o}^{2}+\left\langle\Delta p^{2}\right\rangle \frac{t^{2}}{m^{2}}=\Delta x_{o}^{2}+\frac{\hbar^{2} t^{2}}{4 m^{2} \Delta x_{o}^{2}} \tag{8}
\end{equation*}
$$

(c) Since $\Delta x(t)=10^{-15} m \gg \Delta x=10^{-6} m$, we may estimate

$$
\begin{align*}
\left\langle\Delta x(t)^{2}\right\rangle & =\left\langle\Delta x^{2}\right\rangle+\frac{\hbar^{2} t^{2}}{4 m^{2}\left\langle\Delta x^{2}\right\rangle_{0}} \\
& \approx \frac{\hbar^{2} t^{2}}{4 m^{2}\left\langle\Delta x^{2}\right\rangle_{0}} \tag{9}
\end{align*}
$$

so that

$$
\begin{equation*}
t \approx \frac{2 \Delta x_{f} \Delta x_{o} m}{\hbar}=\frac{2.10^{-15} \cdot 10^{-6} \cdot 10^{-3} \mathrm{~kg}}{10^{-34} \mathrm{Js}}=2 \times 10^{10} \mathrm{~s} \approx 600 \mathrm{yrs} \tag{10}
\end{equation*}
$$

2. In the $\{|R\rangle,|L\rangle\}$ basis, the Hamiltonian takes the form

$$
H=\left(\begin{array}{cc}
0 & \Delta \tag{11}\\
\Delta & 0
\end{array}\right)
$$

(a) The eigenstates and eigenkets are, by inspection,
(b) The time evolution operator can be written

$$
\begin{equation*}
e^{-i H t / \hbar}=e^{-i \omega t}|+\rangle\langle+|+e^{+i \omega t / \hbar}|-\rangle\langle-| \tag{13}
\end{equation*}
$$

where $\omega=\Delta / \hbar$. From this result, we have,

$$
\begin{align*}
|\alpha(t)\rangle & =e^{-i H t / \hbar}|\alpha\rangle \\
& =e^{-i \omega t}|+\rangle\langle+\mid \alpha\rangle+e^{+i \omega t}|-\rangle\langle-\mid \alpha\rangle \\
& =\left(\frac{\alpha_{R}+\alpha_{L}}{\sqrt{2}}\right) e^{-i \omega t}|+\rangle+\left(\frac{\alpha_{R}-\alpha_{L}}{\sqrt{2}}\right) e^{i \omega t}|-\rangle \\
& =\left(\alpha_{R} \cos \omega t-i \alpha_{L} \sin \omega t\right)|R\rangle+\left(\alpha_{L} \cos \omega t-i \alpha_{R} \sin \omega t\right)|L\rangle \tag{14}
\end{align*}
$$

(c) Setting $\alpha_{R}=1, \alpha_{L}=0$, the probability to be in the left side at time t is given by

$$
\begin{equation*}
p_{L}(t)=|\langle L \mid \alpha(t)\rangle|^{2}=\sin ^{2}(\omega t) \tag{15}
\end{equation*}
$$

(d) The Schrödinger equation becomes

$$
i \hbar \frac{d}{d t}\binom{\alpha_{R}}{\alpha_{L}}=\left(\begin{array}{cc}
0 & \Delta \tag{16}\\
\Delta & 0
\end{array}\right)\binom{\alpha_{R}}{\alpha_{L}}
$$

or

$$
\begin{equation*}
\dot{\alpha}_{R}=-i \omega \alpha_{L}, \quad \dot{\alpha}_{L}=-i \omega \alpha_{R} \tag{17}
\end{equation*}
$$

Substituting the second equation into the first gives

$$
\begin{equation*}
\ddot{\alpha}_{R}+\omega^{2} \alpha_{R}=0 \tag{18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\alpha_{R}(t)=A e^{-i \omega t}+B e^{i \omega t} \tag{19}
\end{equation*}
$$

From the boundary conditions, $\alpha_{R}(0)=\alpha_{R}, \dot{\alpha}_{R}(0)=-i \omega \alpha_{L}$, we obtain

$$
\begin{align*}
A+B & =\alpha_{R} \\
-i \omega(A-B) & =\omega \alpha_{L} \tag{20}
\end{align*}
$$

so that $A=\frac{1}{2}\left(\alpha_{R}+i \alpha_{L}\right), B=\frac{1}{2}\left(\alpha_{R}-i \alpha_{L}\right)$. Simplifying the expression, we obtain

$$
\begin{align*}
\alpha_{R}(t) & =\left(\alpha_{R} \cos \omega t-i \alpha_{L} \sin \omega t\right), \\
\alpha_{L}(t) & =\left(\alpha_{L} \cos \omega t-i \alpha_{R} \sin \omega t\right), \tag{21}
\end{align*}
$$

which recovers the result of (b).
(e) If $H=\Delta|R\rangle\langle L|$, then the Schrödinger equation becomes

$$
i \hbar \frac{d}{d t}\binom{\alpha_{R}}{\alpha_{L}}=\left(\begin{array}{cc}
0 & \Delta \tag{22}\\
0 & 0
\end{array}\right)\binom{\alpha_{R}}{\alpha_{L}},
$$

or

$$
\begin{equation*}
\dot{\alpha}_{R}=-i \omega \alpha_{L}, \quad \dot{\alpha}_{L}=0, \tag{23}
\end{equation*}
$$

so that $\alpha_{L}(t)=\alpha, \alpha_{R}(t)=\alpha_{R}-i \omega t \alpha_{L}$ and then

$$
\begin{equation*}
p_{R}(t)+p_{L}(t)=\left|\alpha_{L}(t)\right|^{2}+\left|\alpha_{R}(t)\right|^{2}=1+\alpha_{L}^{2} \omega^{2} t^{2} \neq 1 \tag{24}
\end{equation*}
$$

and the total probability is no longer conserved.
3. In this problem, we need to find the solutions to Schrödingers equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+(V(x)-E) \psi(x)=0, \quad V(x)= \begin{cases}\frac{1}{m} \omega^{2} x^{2} & (x>0) \tag{25}\\ \infty & (x<0)\end{cases}
$$

Since the potential is infinite for $x<0, \psi(x)=0$ for $x<0$. We can impose this condition using the method of images: solving the problem where $V(x)=\frac{1}{2} m \omega^{2} x^{2}$, and taking only odd-parity harmonic oscillator solutions. Properly normalized, this means we must take

$$
\begin{equation*}
\psi(x)=\sqrt{2} \psi_{2 n+1}(x) \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{n}(x)=\frac{1}{\sqrt{2^{n} n!}}\left(\frac{x}{\Delta x}-\Delta x \frac{d}{d x}\right)^{n} \frac{1}{\left(\pi \Delta x^{2}\right)^{1 / 4}} e^{-x^{2} / 2 \Delta x^{2}}, \tag{27}
\end{equation*}
$$

and $\Delta x=\sqrt{\frac{\hbar}{m \omega}}$. The ground-state is then

$$
\begin{equation*}
\psi_{g}(x)=\sqrt{2} \psi_{1}(x)=\frac{2}{\left(\pi \Delta x^{2}\right)^{1 / 4}}\left(\frac{x}{\Delta x} e^{-x^{2} / 2 \Delta x^{2}}\right) \theta(x) \tag{28}
\end{equation*}
$$

The corresponding ground-state energy is

$$
\begin{equation*}
E=\frac{3}{2} \hbar \omega \tag{29}
\end{equation*}
$$

and the average position is

$$
\begin{align*}
\langle x\rangle & =\int_{0}^{\infty} d x|\psi(x)|^{2} x \\
& =\left(\frac{4}{\sqrt{\pi}} \Delta x\right) \int_{0}^{\infty} u^{3} e^{-u^{2}} d u \\
& =\frac{2}{\sqrt{\pi}} \Delta x \int_{0}^{\infty} x e^{-x} d x \\
& =\sqrt{\frac{4 \hbar}{m \omega \pi}} \tag{30}
\end{align*}
$$

