
GRADUATE QUANTUM MECHANICS: 501 Fall 2001

Solution to Assignment 4.

1. (a) For a free particle, H = p2

2m . The Heisenberg equations of motion are

dx

dt
=

1
ih̄

[x,
p2

2m
] =

p

m
dp

dt
=

1
ih̄

[p,
p2

2m
] = 0 (1)

From which we deduce that

p(t) = p, x(t) = x+
p

m
t (2)

where p ≡ p(0), x ≡ x(0). It thus follows that

[x(t), x(0)] = [x+
p

m
t, x] =

−ih̄t
m

(3)

(b) From the above result,

〈x2(t)〉 = 〈(x+
p

m
t)2〉

= 〈x2〉+ 〈p2〉 t
2

m2
+

t

m
〈xp+ px〉 (4)

Now

〈x(t)〉2 =
(
〈x〉+

t

m
〈p〉

)2

(5)

so subtracting these two results, we obtain

〈x(t)2〉 − 〈x(t)〉2 = 〈∆x2(t)〉 = 〈∆x2〉+ 〈p2〉 t
2

m2
+

t

m
〈{∆x, ∆p}〉 (6)

Now the uncertainty relation tells us that

〈∆x2〉〈∆p2〉 ≥
[−i

2
〈[x, p]〉

]2

+
[
1
2
〈{∆x,∆p}〉

]2

=
h̄2

4
+

[
1
2
〈{∆x,∆p}〉

]2

(7)

In a minimal uncertainty wavepacket, at t = 0 ∆x∆p = h̄/2, so the second term is zero, and we
may write

∆x(t)2 = ∆x2
o + 〈∆p2〉 t

2

m2
= ∆x2

o +
h̄2t2

4m2∆x2
o

(8)
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(c) Since ∆x(t) = 10−15m >> ∆x = 10−6m, we may estimate

〈∆x(t)2〉 = 〈∆x2〉+
h̄2t2

4m2〈∆x2〉0
≈ h̄2t2

4m2〈∆x2〉0 (9)

so that

t ≈ 2∆xf∆xom

h̄
=

2.10−15.10−6.10−3kg

10−34Js
= 2× 1010s ≈ 600yrs (10)

2. In the {|R〉, |L〉} basis, the Hamiltonian takes the form

H =
(

0 ∆
∆ 0

)
(11)

(a) The eigenstates and eigenkets are, by inspection,

|±〉 =
|R〉 ± |L〉√

2
, E± = ±∆ (12)

(b) The time evolution operator can be written

e−iHt/h̄ = e−iωt|+〉〈+|+ e+iωt/h̄|−〉〈−| (13)

where ω = ∆/h̄. From this result, we have,

|α(t)〉 = e−iHt/h̄|α〉
= e−iωt|+〉〈+|α〉+ e+iωt|−〉〈−|α〉
=

(
αR + αL√

2

)
e−iωt|+〉+

(
αR − αL√

2

)
eiωt|−〉

= (αR cosωt− iαL sinωt) |R〉+ (αL cosωt− iαR sinωt) |L〉 (14)

(c) Setting αR = 1, αL = 0, the probability to be in the left side at time t is given by

pL(t) = |〈L|α(t)〉|2 = sin2(ωt). (15)

(d) The Schrödinger equation becomes

ih̄
d

dt

(
αR

αL

)
=

(
0 ∆
∆ 0

) (
αR

αL

)
, (16)

or

α̇R = −iωαL, α̇L = −iωαR (17)

Substituting the second equation into the first gives

α̈R + ω2αR = 0 (18)
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so that

αR(t) = Ae−iωt +Beiωt (19)

From the boundary conditions, αR(0) = αR, α̇R(0) = −iωαL, we obtain

A+B = αR

−iω(A−B) = ωαL (20)

so that A = 1
2(αR + iαL), B = 1

2(αR − iαL). Simplifying the expression, we obtain

αR(t) = (αR cosωt− iαL sinωt) ,
αL(t) = (αL cosωt− iαR sinωt) , (21)

which recovers the result of (b).

(e) If H = ∆|R〉〈L|, then the Schrödinger equation becomes

ih̄
d

dt

(
αR

αL

)
=

(
0 ∆
0 0

) (
αR

αL

)
, (22)

or

α̇R = −iωαL, α̇L = 0, (23)

so that αL(t) = α, αR(t) = αR − iωtαL and then

pR(t) + pL(t) = |αL(t)|2 + |αR(t)|2 = 1 + α2
Lω

2t2 6= 1 (24)

and the total probability is no longer conserved.

3. In this problem, we need to find the solutions to Schrödingers equation

− h̄2

2m
d2ψ

dx2
+ (V (x)− E)ψ(x) = 0, V (x) =

{
1
mω

2x2 (x > 0)
∞ (x < 0)

(25)

Since the potential is infinite for x < 0, ψ(x) = 0 for x < 0. We can impose this condition using the
method of images: solving the problem where V (x) = 1

2mω
2x2, and taking only odd-parity harmonic

oscillator solutions. Properly normalized, this means we must take

ψ(x) =
√

2ψ2n+1(x) (26)

where

ψn(x) =
1√
2nn!

(
x

∆x
−∆x

d

dx

)n 1
(π∆x2)1/4

e−x2/2∆x2
, (27)

and ∆x =
√

h̄
mω . The ground-state is then

ψg(x) =
√

2ψ1(x) =
2

(π∆x2)1/4

(
x

∆x
e−x2/2∆x2

)
θ(x) (28)
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The corresponding ground-state energy is

E =
3
2
h̄ω (29)

and the average position is

〈x〉 =
∫ ∞

0
dx|ψ(x)|2x

=
(

4√
π

∆x
) ∫ ∞

0
u3e−u2

du

=
2√
π

∆x
∫ ∞

0
xe−xdx

=

√
4h̄
mωπ

(30)
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