GRADUATE QUANTUM MECHANICS: 501 Fall 2001

Solutions to Assignment 3.

1. (a) Since $U\left|a^{r}\right\rangle=\left|b^{r}\right\rangle=\sum_{s}\left|a^{s}\right\rangle U_{s r}$, by writing the transformation as

$$
(U|+\rangle, U|-\rangle)=(|+\rangle,|-\rangle)\left(\begin{array}{cc}
\cos \theta / 2 & -\sin \theta / 2 \tag{1}\\
\sin \theta / 2 & \cos \theta / 2
\end{array}\right)
$$

we can read off the matrix elements of U to be

$$
[\hat{U}]_{s r}=\left(\begin{array}{cc}
\cos \theta / 2 & -\sin \theta / 2 \tag{2}\\
\sin \theta / 2 & \cos \theta / 2
\end{array}\right)
$$

(b) Under this transformation,

$$
|y ; \pm\rangle \equiv\binom{\frac{1}{\sqrt{2}}}{ \pm \frac{i}{\sqrt{2}}} \rightarrow\left(\begin{array}{cc}
\cos \theta / 2 & -\sin \theta / 2 \tag{3}\\
\sin \theta / 2 & \cos \theta / 2
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{ \pm \frac{i}{\sqrt{2}}}=e^{\mp i \frac{\theta}{2}}\binom{\frac{1}{\sqrt{2}}}{ \pm \frac{i}{\sqrt{2}}} \equiv e^{\mp i \frac{\theta}{2}}|y ; \pm\rangle,
$$

so that

$$
\begin{equation*}
\hat{\mid} y ; \pm\rangle=e^{\mp i \frac{\theta}{2}}|y ; \pm\rangle . \tag{4}
\end{equation*}
$$

(c) Since $H=-\frac{e B}{m} S_{y}, H|y ; \pm\rangle= \pm \frac{\hbar \omega_{c}}{2}|y ; \pm\rangle$, where $\omega_{c}=\frac{|e| B}{m}$, so that the time evolution of these states is given by

$$
\begin{equation*}
|y ; \pm\rangle \rightarrow e^{-i \hat{H} t / \hbar}|y ; \pm\rangle=e^{-i \frac{\omega_{c} t}{2}}|y ; \pm\rangle, \tag{5}
\end{equation*}
$$

permitting us to identify $\theta=\omega_{c} t$.
(d) The precession angle of the spin is given by $\theta=\omega_{c} t$. If $\theta=90^{\circ} \equiv \pi / 2$, then the time to rotate through 90° is

$$
\begin{equation*}
t=\left(\frac{\pi}{2} \frac{m}{e B}\right)=\left(\frac{\pi \times 9.1 \times 10^{-31} \mathrm{~kg}}{2 \times 1.6 \times 10^{-19} \mathrm{C} \times 1 \text { Tesla }}\right)=8.9 \times 10^{-12} \mathrm{~s} \tag{6}
\end{equation*}
$$

2. Since $\psi(x)=\delta\left(x-x_{0}\right)$, it follows that the momentum space wavefunction is

$$
\begin{equation*}
\phi(p)=\langle p \mid \psi\rangle=\int_{-\infty}^{\infty} d x\langle p \mid x\rangle\langle x \mid \psi\rangle=\int_{-\infty}^{\infty} \frac{d x}{\sqrt{2 \pi \hbar}} e^{-i \frac{p x}{\hbar}} \delta\left(x-x_{0}\right)=\frac{1}{\sqrt{2 \pi \hbar}} e^{-i \frac{p x_{0}}{\hbar}} . \tag{7}
\end{equation*}
$$

(a) The time-dependent momentum space wavefunction is then given by

$$
\begin{equation*}
\phi(p, t)=\langle p| e^{-i H t / \hbar}|\psi\rangle=e^{-i \frac{p^{2} t}{2 m} \frac{1}{\hbar}}\langle p \mid \psi\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{-i\left(p x_{o}+\frac{p^{2} t}{2 m}\right) \frac{1}{\hbar}} . \tag{8}
\end{equation*}
$$

(b) Transforming back to real space, we have

$$
\begin{align*}
\psi(x, t) & =\int_{-\infty}^{\infty} d p\langle x \mid p\rangle \phi(p, t) \\
& =\int_{-\infty}^{\infty} \frac{d p}{2 \pi \hbar} e^{i\left(p\left(x-x_{o}\right)-\frac{p^{2} t}{2 m}\right) \frac{1}{\hbar}} \tag{9}
\end{align*}
$$

Using the result

$$
\begin{equation*}
\int_{-\infty}^{\infty} d p e^{-\frac{1}{2} a p^{2}+b p}=\sqrt{\frac{2 \pi}{a}} \exp \left[\frac{b^{2}}{2 a}\right], \tag{10}
\end{equation*}
$$

putting $a=\frac{i t}{m \hbar}$ and $b=i \frac{x-x_{0}}{\hbar}$, we obtain

$$
\begin{equation*}
\text { Amplitude }\left(x_{o} \rightarrow x, \Delta t\right) \equiv \psi(x, \Delta t)=\sqrt{\frac{m}{i h \Delta t}} \exp \left[\frac{i S}{\hbar}\right] \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
S=\frac{m}{2}\left(\frac{x-x_{o}}{\Delta t}\right)^{2} \Delta t \tag{12}
\end{equation*}
$$

is the classical action $S=\int_{0}^{t} d t^{\prime}$ K.E. $\left(t^{\prime}\right)$ for a free particle travelling from x_{o} to x.
3. (a) The Hamiltonian of the simple Harmonic oscillator is

$$
\begin{equation*}
H=\hbar \omega\left[a^{\dagger} a+\frac{1}{2}\right] \tag{13}
\end{equation*}
$$

where a and a^{\dagger} satisfy the algebra $\left[a, a^{\dagger}\right]=1$. Physically, a^{\dagger} creates a single "phonon" of energy $\hbar \omega$. The quantity $\hat{N}=a^{\dagger} a$ is the number operator, which satisfies $[N, a]=\left[a^{\dagger}, a\right] a=-a$, so that $[a, H]=-\hbar \omega[N, a]=\hbar \omega a$ and the Heisenberg equation of motion for $a(t)$ is

$$
\begin{equation*}
\frac{d a(t)}{d t}=\frac{1}{i \hbar}[a(t), H]=-i \omega a(t) \tag{14}
\end{equation*}
$$

which we can integrate to obtain $a(t)=e^{-i \omega t} a$.
(b) The n-th excited state $|n\rangle$ is obtained by acting on the ground-state n times with the creation operator a^{\dagger},

$$
\begin{equation*}
|n\rangle=\frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n}|0\rangle \tag{15}
\end{equation*}
$$

where the pre-factor is introduced to normalize the state.
(c) We can write $|\psi\rangle=\frac{1}{\sqrt{2}}[|0\rangle+\langle\mid a\rangle]$. Now the position operator x can be written as

$$
\begin{equation*}
x=\Delta x\left[a+a^{\dagger}\right], \quad \Delta x=\sqrt{\frac{\hbar}{2 m \omega}} \tag{16}
\end{equation*}
$$

In the Heisenberg representation, this becomes

$$
\begin{align*}
x(t) & =\Delta x\left[a(t)+a^{\dagger}(t)\right] \\
& =\Delta x\left[a e^{-i \omega t}+a^{\dagger} e^{i \omega t}\right] \tag{17}
\end{align*}
$$

To calculate the time dependent expectation value of position, we simply calculate the expectation value of $x(t)$ in the state $|\psi\rangle$, which is

$$
\begin{equation*}
\langle x(t)\rangle=\langle\psi| \hat{x}(t)|\psi\rangle=\frac{\Delta x}{2}(\langle 0|+\langle 1|)\left[a e^{-i \omega t}+a^{\dagger} e^{i \omega t}\right](|0\rangle+|1\rangle) \tag{18}
\end{equation*}
$$

Now only the cross-terms $\langle 0| a|1\rangle=\langle 1| a^{\dagger}|0\rangle=1$ survive, so that

$$
\begin{equation*}
\langle x(t)\rangle=\Delta x \cos (\omega t)=\sqrt{\frac{\hbar}{2 m \omega}} \cos (\omega t) \tag{19}
\end{equation*}
$$

so in the mixed state $|\psi\rangle=\frac{1}{\sqrt{2}}[|0\rangle+|1\rangle]$ the expectation value of the position operator oscillates like a cosine wave.
(d) The experimentalist's results are consistent with the absorption of an odd number of photons, with frequency ω. This will then put the system in the n-th excited state. But if n is odd, the wavefunction of the system is an odd-function of position, vanishing at the origin, so that in this excited state, the electron is never found at the origin. We say that this excited state is "odd-parity" because it is odd under the reflection operator. Physically, the photon is an oddparity particle, and this is why the absorption of odd number of photons leads to an odd-parity electron state.

