GRADUATE QUANTUM MECHANICS: 501 Fall 2001

Assignment 2. Due Oct 1

Read Sakurai, pages 37-70.

1. In a certain basis, an operator A takes the form

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \tag{1}\\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

(a) Suppose $|-\rangle,|0\rangle$ and $|+\rangle$ are eigenkets of A with corresponding eigenvalues $a_{-}<a_{o}<a_{+}$. Write down these eigenkets in the above basis and find their corresponding eigenvalues.
(b) A second observable B can be written

$$
\begin{equation*}
B=3|-\rangle\langle-|+2|0\rangle\langle 0|+1|+\rangle\langle+| \tag{2}
\end{equation*}
$$

Write down B in the original basis. Are A and B compatible observables?
2. Operator A measures quantity α and operator B measures quantity β. $\left|a_{1}\right\rangle$ and $\left|a_{2}\right\rangle$ are eigenkets of A in which α attains the values a_{1} and a_{2}. $\left|b_{1}\right\rangle$ and $\left|b_{2}\right\rangle$ are eigenkets of B in which β attains the values b_{1} and b_{2}. Suppose

$$
\binom{\left|a_{1}\right\rangle}{\left|a_{2}\right\rangle}=\left(\begin{array}{cc}
\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \tag{3}\\
\frac{3}{\sqrt{13}} & -\frac{2}{\sqrt{13}}
\end{array}\right)\binom{\left|b_{1}\right\rangle}{\left|b_{2}\right\rangle}
$$

α is measured and the value a_{1} is obtained. β is measured, then α is measured again. What is the probability of obtaining a_{1} a second time?
3. Answer the following questions about a particle moving in one dimension:
(a) If $\psi(x)=\frac{1}{\left[2 \pi \Delta^{2}\right]^{1 / 4}} e^{-x^{2} / 4 \Delta^{2}}$ what is the uncertainty in momentum?
(b) If $\psi(x)=\frac{1}{\sqrt{2 a}} \theta(1-|x|)$ what is the uncertainty in momentum?
(c) The wavefunction for a particle with a definite momentum p is $\langle x \mid p\rangle=(2 \pi \hbar)^{-1 / 2} e^{i p x / \hbar}$. What is the completeness relation satisfied by the basis of states $|p\rangle$?
(d) If $\psi(p)=\langle p \mid \psi\rangle$ is the wavefunction of a particle in momentum space, write down an expression for the expectation value of its position $\langle x\rangle$.
4. Use the uncertainty principle to estimate the ground-state energy of a particle of mass m, moving in a central potential $V(r)=-k / r^{3 / 2}$.

