GRADUATE QUANTUM MECHANICS: 501 Fall 2001

Solution to assignment I.

1. (a) We expand the trace using a complete set of states and rearrange the terms to obtain:

$$
\begin{align*}
\operatorname{Tr}(X Y) & =\sum_{a}\langle a| X Y|a\rangle=\sum_{a, b}\langle a| X \overbrace{|b\rangle\langle b|}^{1} Y|a\rangle \\
& =\sum_{a, b}\langle b| Y \overbrace{|a\rangle\langle a|}^{1} X|b\rangle=\sum_{b}\langle b| Y X|b\rangle=\operatorname{Tr}(Y X) \tag{1}
\end{align*}
$$

(b) Between any two states $|a\rangle$ and $|b\rangle$, we have

$$
\begin{equation*}
\langle a|(X Y)|b\rangle^{*}=\langle b|(X Y)^{\dagger}|a\rangle \tag{2}
\end{equation*}
$$

We can also write this as

$$
\begin{equation*}
[(\langle a| X)(Y|b\rangle)]^{*}=\left(\langle b| Y^{\dagger}\right)\left(X^{\dagger}|a\rangle\right)=\langle b| Y^{\dagger} X^{\dagger}|a\rangle \tag{3}
\end{equation*}
$$

Comparing the two expressions, we deduce that $(X Y)^{\dagger}=Y^{\dagger} X^{\dagger}$.
(c) In the eigenket basis, for any function $G(\hat{A})$ that can be written as a Taylor series, if $\hat{A}\langle a|=$ $a\langle a|$ then $G[\hat{A}]|a\rangle=G[a]|a\rangle$. Thus since the basis is complete,

$$
\begin{equation*}
\exp [i f(\hat{A})]=\sum_{a} \exp [i f(\hat{A})]|a\rangle\langle a|=\sum_{a} \exp [i f(\hat{a})]|a\rangle\langle a| \tag{4}
\end{equation*}
$$

(d) By substituting $\psi_{a}(x)=\langle x \mid a\rangle, \psi_{a}^{*}(y)=\langle a \mid y\rangle$ we have

$$
\begin{equation*}
\sum_{a} \psi_{a}^{*}(y) \psi_{a}(x)=\sum_{a}\langle a \mid y\rangle\langle x \mid a\rangle=\sum_{a}\langle x \mid a\rangle\langle a \mid y\rangle=\langle x \mid y\rangle=\delta^{(3)}(x-y) \tag{5}
\end{equation*}
$$

2. Since the states $|1\rangle$ and $|2\rangle$ are the eigenkets of some observable, they provide an orthonormal basis. In this basis, the Hamiltonian becomes

$$
H=\left(\begin{array}{ll}
h_{11} & h_{12} \tag{6}\\
h_{12} & h_{22}
\end{array}\right)
$$

Note that since H must be Hermitian, this means that h_{12} is real. If $|\psi\rangle=\sum_{a=1,2} \psi_{a}|a\rangle$ is an eigenket of H, then

$$
\begin{equation*}
\sum H_{a b} \psi_{b}=E \psi_{a} \tag{7}
\end{equation*}
$$

We can then go ahead and derive the eigenvalues from the determinantly equation $\operatorname{det}(H-E \mathbf{1})=0$, back-substituting into the above expression to derive the eigenvectors ψ_{a}. An alternative approach is to write H in the form

$$
\begin{equation*}
H=a+\vec{b} \cdot \vec{\sigma} \tag{8}
\end{equation*}
$$

where $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ are the Pauli matrices. Since $\operatorname{Tr}\left[\sigma_{a} \sigma_{b}\right]=2 \delta_{a b}$, and $\operatorname{Tr} \sigma_{a}=0$, we can obtain

$$
\begin{equation*}
a=\frac{1}{2} \operatorname{Tr}[H \mathbf{1}]=\frac{1}{2}\left(h_{11}+h_{22}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{b}=\frac{1}{2} \operatorname{Tr}[H \vec{\sigma}]=\left(h_{12}, 0, \frac{1}{2}\left(h_{11}-h_{22}\right)\right) \tag{10}
\end{equation*}
$$

We can write $\vec{b}=b \hat{n}$ where \hat{n} is the unit vector $\hat{n}=\vec{b} /|b|$ and $b \equiv|b|$. We can then write

$$
\begin{equation*}
H=a+b \hat{n} \cdot \vec{\sigma} . \tag{11}
\end{equation*}
$$

Written in the above form, it is easy to see that the eigenvalues of H are

$$
\begin{equation*}
E=a \pm b=\frac{1}{2}\left(h_{11}+h_{22}\right) \pm \sqrt{\left[\frac{1}{2}\left(h_{11}-h_{22}\right)\right]^{2}+h_{12}^{2}} \tag{12}
\end{equation*}
$$

corresponding to the two eigenkets of the spin operator $\hat{n} \cdot \vec{\sigma}$,

$$
\begin{equation*}
(\hat{n} \cdot \vec{\sigma})|\hat{n} ; \pm\rangle= \pm|\hat{n} ; \pm\rangle \tag{13}
\end{equation*}
$$

From the information in the question, these two states are given by

$$
\begin{align*}
|\mathbf{n} ;+\rangle & =\cos \frac{\beta}{2}|1\rangle \pm e^{i \alpha} \sin \frac{\beta}{2}|2\rangle \\
|\mathbf{n} ;-\rangle & =-\sin \frac{\beta}{2}|1\rangle \pm e^{i \alpha} \cos \frac{\beta}{2}|2\rangle \tag{14}
\end{align*}
$$

where α and β are the polar co-ordinates of the unit vector $\hat{n}=(\sin \beta \cos \alpha, \sin \beta \sin \alpha, \cos \beta)$. The question gave the result for the upper state, we have chosen the lower state $|\hat{n} ;-\rangle$ to be orthogonal to this $|\hat{n} ;+\rangle$. Since $n_{y}=0$, we deduce that $\alpha=0$. We also have $\cos \beta=b_{z} / b$, from which we deduce that

$$
\begin{align*}
& \cos \frac{\beta}{2}=\left[\frac{1+\cos \beta}{2}\right]^{\frac{1}{2}}=\left[\frac{1+b_{z} / b}{2}\right]^{\frac{1}{2}} \\
& \sin \frac{\beta}{2}=\left[\frac{1-\cos \beta}{2}\right]^{\frac{1}{2}}=\left[\frac{1-b_{z} / b}{2}\right]^{\frac{1}{2}} \tag{15}
\end{align*}
$$

The final expression for the two eigenkets is then
3. First let us expand

$$
\begin{equation*}
F(p)=\sum_{n=0, \infty} f_{n} p^{n} \tag{16}
\end{equation*}
$$

as a Taylor series. To find the commutator with q, we need to know

$$
\begin{equation*}
[q, F(p)]=\sum_{n=0, \infty} f_{n}\left[q, p^{n}\right] \tag{17}
\end{equation*}
$$

Now using the result $[A, B C]=B[A, C]+[A, B] C$, we may deduce that

$$
\begin{align*}
{\left[q, p^{2}\right] } & =p[q, p]+[q, p] p=2(i \hbar) p, \\
{\left[q, p^{3}\right] } & =p\left[q, p^{2}\right]+[q, p] p^{2}=3(i \hbar) p^{2} \tag{18}
\end{align*}
$$

and by induction,

$$
\begin{equation*}
\left[q, p^{n}\right]=i \hbar n p^{n-1} \tag{19}
\end{equation*}
$$

so that

$$
\begin{equation*}
[q, F(p)]=i \hbar \sum_{n=0, \infty} f_{n} n p^{n-1}==i \hbar F^{\prime}[\hat{p}] \tag{20}
\end{equation*}
$$

where we have made the crucial identification, $\sum_{n=0, \infty} f_{n} n p^{n-1}=F^{\prime}(p)$, where $F^{\prime}(p)$ is the first derivative of the function $F(p)$.
4. The short answer is no! In order to make sure that the spurious fields B_{1} are small compared with the dipole fields, one must make sure that the momentum of the electron is zero, within a certain tolerance Δp. But to measure the field B_{2}, one needs to make sure that the position r is known sufficiently accurately so that the uncertainty in B_{2} is much smaller than B_{2}. These two requirements imply that $\Delta x \Delta p \ll \hbar / 2$. But the uncertainty relation implies the exact opposite, and for this reason, the measurement is not possible on a free electron.
To see this more explicitly, note that $B_{1} \ll B_{2}$ implies

$$
\begin{equation*}
e v r \ll \mu_{e} \tag{21}
\end{equation*}
$$

But since $\Delta v \ll v$ and $\Delta x \ll r$, this implies, $\Delta v \Delta x \ll\left(\mu_{e} / e\right)$ or $\Delta x \Delta p \ll\left(m \mu_{e} / e\right)=$ $\hbar / 2$, where we have substituted $\mu_{e}=e \hbar / 2 m$. This directly contradicts the uncertainty principle $\Delta x \Delta p \geq \hbar / 2$.

