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Physics 228, Lecture 2

Monday, Jan. 24, 2005

Geometrical Optics. Ch 34:1–3
Copyright c©2003 by Joel A. Shapiro

1 Flat mirrors

When you look in a mirror, you see an image of yourself behind the mirror.
You are the object of which that image is the image. Light which bounces
off you, the object, travels to the mirror, is reflected, and reaches the eye as
if it had come from the image in back of the mirror. Other things are also
imaged in the mirror. As a child you learned that the image is not a real
object, but it appears to your eyes to be a real object, a person just like you
except that she wears her watch on the wrong hand and parts her hair on
the wrong side. We begin by carefully describing that image — where it is,
and how big. Then we will do the same for images formed by more complex
situations, curved mirrors and lenses.

Consider a plane, or flat, mirror with an ob-
ject O a distance p in front of it, and consider
several rays of light scattered off that point, being
reflected off the mirror, and then entering your
eye. The distance p that the object is in front
of the mirror is called the object distance. If

S&BV5 Fig 36.1
object in plane
mirror
3 1/4” × 3 1/2”

we extend the rays entering your eyes back behind the mirror, all of the rays
will pass through a single point I. Because the angle of reflection is equal to
the angle of incidence, we have a congruence which shows that the point I is
exactly as far behind the mirror as O is in front, q = p. The distance q that
the image is from1 the mirror is called the image distance2.

If the mirror is vertical, note that the heights of the point I and the
point O are the same. If we look at an extended object with a height h,
the image will also have a height h. This is true for the other coordinate
parallel to the mirror as well. The image is neither enlarged or shrunk, so we
say it has magnification equal to 1. Notice that these coordinates are not

1Later we will give signs to q, which in this case will be negative.
2The text calls the image distance s and the object distance s′.
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reversed – if your mirror is in an East-West plane (so you are looking north
perpendicular to it) your East hand is on the East side of the image just as
your head is at the top end of the image. What is reversed is not left and
right, it is front and back. Your bellybutton is north of your spine, but the
image’s bellybutton is south of her spine.

Why do we so persistently claim that mirrors reverse left and right? Sup-
pose you could walk through the mirror and try to assume the position of
your image (which we will imagine frozen in place). First you would walk the
distance p+ q to get in the right location, but you would still be facing north
while your image was facing south. Probably you would then turn around,
more precisely rotate 180◦ about a vertical axis, so that now you too would
be facing south, but in the process your hand with the watch, which previ-
ously had matched the images hand with the watch, is now on the wrong
side. You cannot assume the position of the image without morphing like a
cartoon character through a two dimensional flattening, but because we are
so nearly symmetrical we tend to think we have matched the image, almost,
after rotating, and then notice that we have reversed right and left. We could
have rotated about a horizontal axis instead, but that would have left us with
our feet in the air, and that doesn’t seem very natural to us.

An image can be virtual or real, although for our flat mirror it is virtual.
The distinction has to do with whether any light was really present at the
image. The mirror probably has a plaster wall behind it — none of the light
which appears to come from the image behind the mirror was ever really
there, so this is a virtual image. We will see some real images when we
consider curved mirrors and lenses.

Last time we discussed a light ray which was
reflected off two mirrors. Light which leaves the
object and bounces off the first mirror continues
on a path which appears to originate from the
image I1, and this acts as an object for the second
mirror, so the image of I1 is I3. Of course the
object can also be seen at I1 and at I2. If O is
a right hand, I1 and I2 are lefthanded, but I3 is
righthanded.

S&BV5 Fig 36.5
double reflection
at 90◦

3”× 3 3/4”

One way to demonstrate that the image is behind the mirror at q = p is to
trace two convenient rays emanating from the object, rather than arbitrary
ones as we did. One such ray is the one which goes perpendicular to the
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mirror, and bounces back along the same path,
as in P–Q. This makes the congruence argument
clearer, for angles 6 PRQ and 6 P ′RQ are the com-
plements of the angle of incidence and the angle of
reflection respectively, but those are the same. To-
gether with the fact that 6 RQP = 6 RQP ′ = 90◦

and the common side RQ, we have congruent tri-
angles, so p = q.

S&BV5 Fig 36.2
Image in plane
mirror
3” × 2 3/8”

We will see that this method of finding two convenient rays is more es-
sential for more complex situtations.

2 Spherical mirrors

Not all mirrors are flat. We will consider spherical mirrors. They are not
complete spheres, but parts of a spherical surface. Mirrors generally work
from one side only, so we distinguish concave mirrors from convex ones. If
the mirror works from the inside, it is a concave mirror, while a convex mirror
works from the outside of the sphere.

The mirror has a radius of curvature R and a cen-
ter point C. Any light ray emerging from C will
hit the mirror perpendicular to it and be reflected
to C. If there is a point O further from the sphere,
one ray easy to trace is the one that goes through
the center and is bounced straight back. Another
ray from O will intersect that ray at the point I
after being reflected from P with 6 OPC = 6 CPI.

When considering objects which lie close to the
line OCV , we call this line the principal axis,

CO I
V

P

and call rays which make only small angles with this axis paraxial rays.
All paraxial rays from O will pass through the image point I, as they did
(virtually) for the plane mirror, though here I is a real image. But this is
not precise, and rays which make larger angles, such as the red one, will not
quite pass through the right point. This will cause a lack of good imaging
called spherical aberration.
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Now suppose O is the bottom of an object of
height h. Let us find the image of the top of the
object. One ray passes through the center of cur-
vature of the mirror C, and back along the same
line. Another hits V at an angle θ to the principal

S&BV5 Fig. 36.11
real image, con-
cave mirror
6 1/2” × 3 1/2”

axis, and is reflected, again at angle θ, to the tip at the bottom of the small
arrow h′. The two right triangles with bases O–C–V and I–V respectively
are similar, The object distance (from V , |OV |) is called p and the image
distance |IV | is called q, so

h

p
=
|h′|
q

.

I have placed absolute value signs on the height h′ of the image because we
will consider h′ to be negative to reflect the fact that the image in inverted.
We will also define the magnification to be negative:

M =
h′

h
= −q

p
.

Note that the right triangles with bases CO and CI are also similar, so

h

|OC| =
|h′|
|CI| or

h

p−R
=
−h′

R− q
,

so

M =
h′

h
= −R − q

p−R
= −q

p
,

so
R− q

q
=

p− R

p
, or

R

q
− 1 = 1− R

p
, or

R

q
+

R

p
= 2,

or finally
1

q
+

1

p
=

2

R
.

This is the mirror equation.
If an object is very far away, p� R, 1/p becomes negligible in comparison

to 2/R, and the image approaches a fixed distance,

q → R

2
= f,

where f is called the focal length. The rays emerging from a point of an
object infinitely far away approach the mirror in parallel, so the focal point
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F is the point to which incoming parallel rays (parallel to the principal axis)
are focussed. We may use f instead of R to rewrite the mirror equation in a
form which will also hold for lenses,

1

q
+

1

p
=

1

f
.

Note also, by reversibility of the paths, that an
object at the focal point is focussed at infinity,
and an object closer than the focal point has a
negative q, which means its image is on the other
side of the mirror.

Show ball on pendu-
lum in concave mir-
ror

2.1 Convex Mirror

A spherical mirror can be made the other way too,
so it reflects light on the outside. Consider two rays
from the tip of the object. One ray simple to investi-
gate is the one directed towards the center of curva-
ture, which will hit the mirror perpendicular to it and
be reflected back along its path.

S&BV5 Fig 36.13
Convex mirror
real object
7” × 3 1/2”

Another ray starts parallel to the principal axis and will be reflected. Of
course the angle of incidence is equal to the angle of reflection, which means
the angles the light makes with the line through C is the same. For paraxial
rays this implies that it appears to have come from the focal point F which is
still halfway between the center of the mirror, V and the center of curvature
C. That is because the triangle AFC is isosceles so the orange and purple
angles are the same. These two rays intersect at the head of the arror at
I, the image. We see that the image is behind the mirror, and so it is
virtual, not real — no light actually reaches the point I. Furthermore we
see the image is upright. Notice that the image is on the opposite side from
the case of the concave mirror, and so are the focal points and centers of
curvature. So we might think of letting q, f and R take on negative values to
indicate this, rather than insisting they be actual distances, which of course
are always positive.

Using similar triangles again, and assuming the angles of the rays are
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paraxial enough to approximate tanα ≈ sin α, we can show3 that

1

p
− 1

|q| = − 2

|R| = − 1

|f | . (1)

Now if we decide to consider q, f and R to be negative, this is

1

p
+

1

q
=

2

R
=

1

f
,

so we have exactly the same equation as for the concave mirror. We also
have the magnification is

M = −q

p
=
|q|
p

> 0,

which is natural as the image is upright, not inverted. Note that the image
is virtual, as there is, of course, no light actually present behind the mirror.

We can use the same formula for both convex and concave mirrors, we
just need to remember the sign conventions:

Sign conventions for mirrors

Object in front of mirror p > 0 real object
Object behind mirror p < 0 virtual object
Image in front of mirror q > 0 real image
Image behind mirror q < 0 virtual image
Concave mirror R > 0, f > 0 C and F in front of mirror
Convex mirror R < 0, f < 0 C and F behind mirror

M positive M > 0 image upright
M negative M < 0 image inverted

3 Images by refraction

While mirrors are certainly very useful, and the most important optical parts
of high end telescopes, most practical optical imagine is done with refraction

3By similar triangles, h′/(R − |q|) = h/(R + p), and h′/(1
2R − |q|) = tan 6 AFO ≈

sin 6 AFO = h/(1
2R). Thus

h′

h
=

R− |q|
R + p

=
R− 2|q|

R
,

which gives Eq. 1.
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rather than reflection. We will consider a spherical interface between two
transparent media with indices of refraction n1 and n2, one of which may be,
but doesn’t have to be, air, which is almost vacuum. Our example will have
the center of curvature to the right, opposite the location of the object. We
will assume the image is on the right, but we will see that is not always the
case.

Consider a ray of light leaving the object and
passing through the center of curvature. As it
hits the surface perpendicular to it, the angle of
incidence is zero and it is undeflected, and forms
the principal axis. The image has to include this

S&BV5 Fig 36.18
Refraction convex
surface
6 1/4” × 2 1/4”

ray, so it is on the principle axis. Consider another ray leaving O at an angle
α, hitting the surface at P and refracted to I, with the angles β at C and γ at
I as shown. We are considering only paraxial rays, so we may approximate

sin α ≈ α ≈ tanα, cos α ≈ 1,

and the same for β and γ, and also for the angles of incidence θ1 = α + β
and refraction, θ2 = β − γ The side d is the altitude of three right triangles
whose bases are approximately p, R, and q respectively. For the first and
last, the bases actually differ by an amount R(1 − cos β), but as β is small
this is negligible. Thus

d = R sin β ≈ Rβ ≈ p tanα ≈ pα ≈ q tan γ ≈ qγ,

or

α ≈ d

p
, β ≈ d

R
, γ ≈ d

q
.

But Snell’s law tells us

n1 sin θ1 ≈ n1θ1 = n1(α + β) ≈ dn1(
1

p
+

1

R
)

= n2 sin θ2 ≈ n2θ2 = n2(β − γ) ≈ dn2(
1

R
− 1

q
).

So
n1

p
+

n2

q
=

n2 − n1

R
.

This is the equation for refracting surfaces. We need to examine what hap-
pens as we vary the parameters.



Last Latexed: January 21, 2005 at 14:03 8

Let’s assume n2 > n1, which is implied by the shading, so the right hand
side is a positive number independent of where the source is. As I bring the

source closer, eventually n1/p will equal
the right hand side, (n2 − n1)/R, so n2/q
goes to zero and the image will move out to
infinity q →∞. This is shown in magenta.
If we bring it still closer, n2/q will have to
become negative to balence the equation,

CO I
1 1

O2

2
I 3

O3

I   at infinity

3
p

-q
3

and so q will be as well. I have shown this in blue. Note that the light
continues to the right and diverges, appearing to come from the image I3,
but there is no light at the image, so I3 is a virtual image, while I1 is a real
image.

Suppose we imagine being able to continually adjust the curvature of the
interface. Notice that making the surface less curved means making R bigger.
If we let R go all the way to infinity, we have a flat surface, and then we see

n1

p
= −n2

q
−→ q = −n2

n1

p.

If you look down into a pool and see a fish a distance |q| under the surface,
it is really a distance p = n1

n2
|q| under the surface. As the light is originating

in the water, n1 = 1.33 and it emerges into air, n2 = 1, you must aim your
spear 33% below where you see the fish in order to get it.

If we continue to deform the spherical interface further, we get a spherical
surface with its center of curvature on the left. We have been deforming 1/R
continuously, so we should now consider the radius of curvature negative.
This leads us to

Sign conventions for refracting surfaces

Object in front of surface p > 0 real object
Object behind surface p < 0 virtual object
Image in back of surface q > 0 real image
Image in front of surface q < 0 virtual image
Convex (from “front”) R > 0 C in back of surface
Concave (from “front”) R < 0 C in front of surface
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4 Summary

• Optical components form images of objects. They deflect light so that
to an observer tracing back the path the light is taking entering the
eye, the light seems to come from the image. Images may be real or
virtual, depending on whether the light rays actually pass through the
image point of not.

• Images can be magnified by a ratio M , which is considered positive if
transverse dimensions are not inverted.

• The object distance p is the distance the object is away from the optical
element, and the image distance q is the distance of the image from the
same point. But each of these may be considered negative if they are
not on the “natural” side of the optical element.

• M = −q/p.

• The rays from the object, after deflection, appear to come from the
image, but that is only true, in general, for paraxial rays, which make
small angles with the principal axis. For larger angles spherical aber-
ration describes the fact that the rays do not come from precisely the
point of the image they ought to.

• For spherical mirrors,
1

q
+

1

p
=

2

R
.

• For spherical interfaces between transparent media,
n1

p
+

n2

q
=

n2 − n1

R
.

• q, p, R, f , and M can be positive or negative, with sign conventions
given in the tables, one for mirrors and one for interfaces.


