Physics 228 Second Exam Solutions

1. The relativistic factor γ is given by

$$E = \gamma mc^2$$

$$\gamma = \frac{400 \text{ GeV}}{938.2 \text{ MeV}} = 426$$

2. For λ =250 nm, the photoelectrons have maximum kinetic energy

$$K = \frac{hc}{\lambda} - \phi = 0.23 \text{ eV}$$

3. For a particle in a 1-dimensional box of width 0.5 nm, we have

$$E_n = \frac{h^2}{8mL^2} n^2$$

$$E_2 - E_1 = \frac{3h^2}{8mL^2} = 4.52 \text{ eV}$$

4. For helium Z=2, and the energy levels are given by

$$E_n = -\frac{54.4 \text{ eV}}{n^2}$$

$$E_3 - E_1 = 54.4 \text{ eV} \left(\frac{1}{1^2} - \frac{1}{3^2}\right) = 48.4 \text{ eV}$$

$$\Rightarrow \lambda = 25.6 \text{ nm for 1s to 3p}$$

- 16. Twin B sees the distance 4 light years as contracted by the factor $\gamma=1.25$; thus he sees it as 3.2 light years.
- 17. Proper time is measured between two events occurring at the same spatial coordinates.
- 18. The total energy of the system is conserved. Since $\beta = v/c = 0.6$, we have $\gamma = 1.25$, and thus

$$E_i = Mc^2 = E_f = 2\gamma mc^2$$

$$m = \frac{M}{2.5} = 0.4 M$$

- 19. The wavefunction is not spherically symmetric; this rules out the answers with ℓ =0. The state with n= ℓ is not allowed, leaving only the n=2 and n=3 choices. Since there is a node in r (where the wavefunction is zero) it must be n=3.
- 20. In the Bohr model the electron moves in a circular orbit where the orbital angular momentum of the electron is $L=n\hbar$. Thus this leads to discrete values for L, r and v
- 21. Power is equal to energy per unit time; thus we have

$$P = 10^{17} \frac{photons}{\text{sec}} \times \frac{1240 \text{ eV} - \text{nm}}{(633 \text{ nm}) photon}$$

 $\times \frac{1.6 \times 10^{-19} \text{ J}}{eV} = 31.3 \text{ mW}$

- 22. The Planck blackbody formula cuts off the ultraviolet (short wavelength) end of the spectrum, avoiding the "ultraviolet catastrophe" of the classical formula.
- 23. Since the energy levels are

$$E_n = \frac{h^2}{8mL^2}n^2$$

the lowest energy state is 130 keV.

- 24. They have the same momentum, $p=h/\lambda$.
- 25. See Ex. 42.4. Ratio = 2.1.
- 26. Since Z = 12 we need 12 electrons. The lowest-energy configuration is $1s^22s^22p^63s^2$.
- 27. The state 4d¹² cannot exist since there are only 10 d states available.