Physics 343 Lecture # 11: distant, dusty galaxies

Schedule for this week and next

<u>Monday-Wednesday 4/14-16</u>: second session for Lab # 5, in my office (Serin W309) for all sections

<u>Monday 4/21</u>: Lab # 5 due

<u>Tuesday-Wednesday 4/22-23</u>: Lab # 6 observations for those not going to WV (only Sections B/E/G/H will meet)

<u>Friday 4/25</u>: drive NJ → WV

21 people + 6 cars to Green Bank

DepartsDriver12:30pmBaker1:30pmPerruzzo2:00pmLeung2:30pmYolleck3:00pmSingh4:00pmRivera

Passengers Dobaria, Fekete, Wasserman Belfer, Brody, Kaufman Trinker Kammerer, King Leong, Patel, Rice Fahy, Parikh, Porter

Return trip: passengers can be reshuffled if needed. One passenger cell phone number per car. Do **NOT** trust GPS once in West Virginia!

Interstellar gas in the Milky Way

All-sky images projected with center of Milky Way at (0,0).

NASA/Multiwavelength Milky Way project

Molecular clouds

Molecular gas in the Milky Way is distributed in clumpy, filamentary clouds with masses $M \sim 104 - 106 M_{\odot}$.

Jackson et al. (2006, ApJS, 163, 145)

Molecular cloud properties

Clouds gravitationally bound, exhibit supersonic turbulence.

Narayanan et al. (2008, ApJS, 177, 341)

Dense gas is elusive!

Molecular clouds are ~74% H_2 and ~25% He by mass.

Excitation is determined by collisions with H₂ and He. However, at low temperatures ($T_{kin} \sim 10-50$ K), only excited rotational states will be populated.

H₂ does not deexcite radiatively because it has no permanent electric dipole moment. Thus, H₂ in molecular clouds produces almost no emission.

CO: a proxy for H₂

CO has only ~10-4 the abundance of H₂, but it does have a permanent electric dipole moment, and energy levels that are only hv/k = 5.5 K, 17 K, ... above ground.

One rotational quantum number J with selection rule $\Delta J = \pm 1$ gives a set of rotational transitions with rest frequencies 115, 230, 345, ... GHz ($\lambda_{rest} = 2.6, 1.3, 0.87, ... mm$).

Vibrational Quantum Number v

courtesy K. Volk

A CO-to-H₂ conversion factor

 $CO(J = 1 \rightarrow 0)$ is optically thick, so we don't "see" every CO molecule in a cloud. However, α_{CO} can still be used as long as clouds are roughly virialized.

The value of CO SLEDs

CO Spectral Line Energy **Distributions constrain** a combination of T_{kin} , n_{H2}, and (if we include absorption and stimulated emission) fractional CO abundance per unit velocity gradient $X_{CO}/(dv/dr)$.

Weiss et al. (2007, ASPC, 375, 25)

Key fact: new stars form from H₂

Understanding galaxy evolution

cosmic microwave background: smooth to 10-4 of mean $\langle T \rangle$

NASA/WMAP

local universe: lumpy, with galaxies showing "complex regularities"

Finding distant galaxies

Identifying distant galaxies in formation (1 + $z = \lambda/\lambda_{rest}$) depends strongly on technique: tend to find different (but overlapping) samples in different ways.

Two local star-forming galaxies...

M82 (ordinary "starburst")

Arp 220 (messy merger)

N. Scoville (California Institute of Technology) and NASA

HST • NICMOS

Copyright © 2000 National Astronomical Observatory of Japan, all rights reserved

A multiwavelength view

M82 (ordinary "starburst")

Arp 220 (messy merger)

Messy mergers are dustier

M82 (ordinary "starburst")

Arp 220 (messy merger)

In a merger, dense gas coalesces into center of mass of system and triggers an obscured "burst" of star formation.

Cosmic star formation rate vs. *z*

Colbert et al. (2006, ApJ, 648, 250): star formation rate per unit volume vs. redshift (for UV/optical samples)

<u>Quantity</u> of star formation dominated by *z* < 1.5. <u>Quality</u> of star formation different at *z* > 1.5.

A mysterious dusty galaxy...

optical: Williams et al. (1996, AJ, 112, 1335)

850 μm: Hughes et al. (1998, Nature, 394, 241)

Dusty galaxies ubiquitous at high z

If we make a deep map of any region of the sky at far-IR to millimeter wavelengths, we'll find very dusty galaxies at a wide range of z > 1and many more than in same volume at z = 0!

Lindner, Baker, et al. (2011, ApJ, 737, 83): <z> ~ 3.1

A surprising and helpful property

Surprise: more distant galaxies are not always fainter!

Why dusty galaxies are important

We know that (per unit comoving volume):
(a) UV/optical-selected galaxies turn gas into stars at a higher integrated rate at higher *z*; and
(b) dust-selected star-forming galaxies (some entirely hidden in UV/optical!) are more abundant at higher *z*.

We also know that stars form from dense gas.

Conclusion: we must understand dense gas in distant galaxies to get a complete picture of galaxy evolution.

The threefold path to enlightenment

Leading redshift search strategy for dusty galaxies: Step 1: Deep radio continuum mapping. Step 2: Deep optical spectroscopy. Step 3: CO line search at z_{opt} . Step 3: CO line search at z_{opt} .

Neri et al. (2003, ApJ, 597, L113)

Chapman et al. (2003, Nature, 422, 695)

Step 1 fails for ~30% (no counterpart). Step 2 fails for ~25% (no z_{opt}). Step 3 fails for ~50% (z_{opt} is wrong?).

Two kinds of molecular line searches

(1) Source has a known redshift, typically from optical spectrum or a molecular line measured elsewhere. Main challenge for (single-dish) CO spectroscopy: frequency structure in noise.

(2) Source has no redshift, typically due to high dust obscuration in the UV/optical. Main challenges for spectroscopy: structured noise + bandwidth. shooting fish in a barrel

shooting fish in a lake

A better mousetrap: the Zpectrometer

Telescope: 100m Green Bank Telescope Frontend: 26–38 GHz receiver probes CO at 2.0 < z < 3.4 and z > 5.0 Backend: WASPs = <u>Wideband Analog</u> <u>SPectrometers deliver 16.4 MHz ~</u> 150 km s⁻¹ resolution over full Δz

Ultra-wideband analog cross-correlator spectrometer for the Green Bank Telescope

PI: A. Harris (U Maryland)

Combine signals before amplifying

GBT frontend electronics Cal noise diode A Phase switch in To continuum backend 180 Feed Cal cplr hybrid horn To Zpectrometer HEMT 44.25 GHz amp -To Zpectrometer To continuum backend 5 K Cryostat B Phase switch in Cal noise diode

Source and sky signals combined before amplifier.

Amplifier outputs cross-correlated to defang fluctuations in system gain ⇒ noise integrates down with time.

Install on telescope

Analog vs. digital backend: + less mass + less heat dissipation

⇒ can be directly hung from turret, reducing structured noise due to long cable or fiber runs

Eliminate stable noise structure

Quiz

Determining redshifts

In the last few years, large-area surveys have detected new very rare populations of extremely bright dusty galaxies.

Discrepant optical/radio redshifts

Frayer et al. (2011, ApJ, 726, L22): use Zpectrometer to determine *z*_{CO} > *z*_{opt} for two *Herschel* galaxies.

Gravitationally lensed!

Supported by morphologies in dust continuum maps (Negrello et al. 2010, Science, 330, 800).

Brightest known dusty galaxy!

May 8, 2009: Mark Swinbank and collaborators find a 106 mJy source in 870 μ m imaging of MACS J2135–010217 (a z = 0.32 cluster).

Optical counterpart is faint and red.

Zpectrometer delivers quick redshift

May 19: Zpectrometer detects CO(1–0) line at *z* = 2.32, confirmed May 27 by detection of CO(3–2) with PdBI.

Lensed images are resolved

July 13: High-resolution mapping at 345 GHz reveals four knots of (rest) 260 µm emission each doubly imaged.

> With source and lens redshifts in hand, can derive magnification: $M = 2 \times 16 = 32$.

Scaled-up nascent star clusters?

Star-forming knots in SMM J2135–0102 fall above the luminosity–size relation for Milky Way molecular clouds, but to the same degree as knots in two local starbursts.

<u>Summary</u>

Dense molecular gas, the raw material from which galaxies form new stars, can be studied with multiple emission lines of CO and other species.

In the distant (z > 1) universe, such studies allow us to

- + measure dense gas masses
- + characterize dynamical states

+ determine redshifts (especially for dusty galaxies!) which are important for understanding galaxy evolution.