Gravitational Lensing Physics 343, Lecture 11

Geometric Optics

Converging Lens

Diverging Lens

Courtesy: Art Congdon

Gravitational Optics

Courtesy: Art Congdon

Basic Lensing Equations

- Deflection angle
 - $\alpha = 4GM/\xi c^2$
- Lens Equation

$$u = \theta - \nabla \phi$$

Lens Potential

$$\nabla^2 \phi = \kappa$$

$$\kappa = \Sigma / \Sigma_{crit}$$

But thats not all!

Lensing magnifies images

$$\mathbf{M}^{-1} = \begin{pmatrix} 1 - \phi_{,xx} & -\phi_{,xy} \\ -\phi_{,xy} & 1 - \phi_{,yy} \end{pmatrix}$$

- Typically ~ Orders of a few times the unlensed flux
- Can many orders of magnitude

Three Regimes of Lensing

Strong Lensing

• Weak Lensing

• Micro/Millilensing

Three Regimes of Lensing

- Strong Lensing
 - Large deflections
 - Multiple images
 - Source magnification
- Weak Lensing
- Micro/Millilensing

- Mass geometry determines type of images
- Source location determines number of images
- Models are often degenerate

- Caustics are critical curves in source plane
- Define regions where source will produce specific image configurations
- Crossing changes image number by 2

Gravitational Lens G2237+0305

Three Regimes of Lensing

- Strong Lensing
- Weak Lensing
 - Tiny distortions of background galaxies
 - Statistical in nature
 - Large area mass maps
- Micro/Millilensing

Weak Lensing

- Need deep images to recover sources
- Source redshifts are uncertain
- Source shapes are uncertain
- Crucial for some H₀ measurements

Smoking Gun !?!

Bullet Cluster- Clowe et al., 2006

Smoking Gun !?!

Bullet Cluster- Clowe et al., 2006

Three Regimes of Lensing

- Strong Lensing
- Weak Lensing
- Micro/Millilensing
 - Deflections on micro to milli arcsec scales
 - Sensitive to
 "substructure" in
 lenses
 - Detected through magnification

Keeton et al., 2004

Micro/Millilensing

- Powerful and unique tool to detect hard to find objects
 - Exoplanets
 - Compact Objects
 - CDM Substructure
- Rapidly growing
 - Future surveys and instruments

Why Radio??

Image courtesy of NRAO/AUI and ALMA/ESO/NRAO/NAOJ

Surveys

- Discovery of many new lenses due to high angular resolution and fast image processing
- MIT-Green Bank, Parkes-MIT-NRAO, Jodrell Bank, CLASS: ~30% of known lenses

Central Images

- Lensing predicts odd numbers of images
- Central Images are highly demagnified
- Only two such images found in lens systems
- Radio crucial due to resolution and "low" radio emission in lens

Flux Ratio Anomalies

Relative R.A. (arcsec)

- Provides handle on size of stellar or substructure clumps
- Perturbations in magnification depend on source size
 - Radio sources are big
- Free from extinction concerns

Time Delays

Relative Decl. (arcsec)

- Due to different light paths, images arrive at different times
- Time delays yield cosmological constraints, i.e. Hubble Constant
- Need good resolution
- Radio emission free from differential extinction concerns

$$\Delta t_{ij} = \frac{1+z_l}{c} \frac{D_{ol} D_{os}}{D_{ls}} \left[\frac{1}{2} \Big(|\vec{x}_i - \vec{u}|^2 - |\vec{x}_j - \vec{u}|^2 \Big) - \Big(\phi(\vec{x}_i) - \phi(\vec{x}_j) \Big) \right]$$

Time Delays

Summary

- Lensing is a vital tool for astrophysicist
 - Direct measurements of mass in lenses
 - Key role in answering big questions
- Radio measurements are important to lensing
 - Excellent resolution
 - Vital wavelengths for lensing science

The VLA has 27 dishes in its array.

How many baselines does the VLA have??